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Overview

1. Ecosystems and ecosystem management

2. Acoustic needs for ecosystem investigations

3. 3D/4D-measurements of schools

4. Non-invasive verification of 3D-measurements

5. Trawl verification 

6. Conclusions



Ecosystem approacch 

for management of marine resources

• The whole water column have to be measured 

simultaneously for all species…

• … which inherently mean that some species are 

not optimally distributed for measurements



The Barents sea ecosystem (simplified)



Measurements from a range 

of measurement platforms



The acoustic needs

for investigating species of marine ecosystems

Multi-beam “single-frequency” 

sonar: for schools close to the 

surface

The acoustic needs

Bottom
Multi-beam ”single-frequency” echo-

sounder: for fish in water column

Multi-frequency echosounders: ”colour 

vision” for species identification

Ship Sea surface

Towed 

vehicle to 

get deep



Acoustic needs as implemented 

for abundance estimation at IMR

Postprocessing

Database

Echogram 

interpretation: 

final decision

Real-time processing 

(filtering, school-detection, 

data-reduction)

Input to ICES WG to 

recommend quotas
Numerical density 

/ age distribution

Models

Info from other species 

related sources

Scientific studies

Acoustic source 

(echosounder, 

SONAR, ...)

Multibeam sonar (MS70 – 500 beams)

Multibeam echosounder ME70 Multifrequency 
echosounder EK60

Data from external 

system (trawl, CTD, 

MOCNESS, ...)

CTDTrawl

• combination of acoustic data with size distribution from biological samples

• scientists (not the system) take the final decision

Essential:

Postprocessing

Stock size estimation



Bottom

Multibeam 

SONAR for 

schools near 

sea surface

Unavailable: multibeam 

echosounder for fish in 

water column

Multifrequency echosounder for 

species identification

Vessel Sea surface

IMR equipment

multibeam echosounder not available

Problem: no overlapping volumes between EK60 and MS70



Interface of operational system

implementing acoustic needs

TrawlTrawl

Not in schools All schools Trawled schools
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school bounding box

Non-invasive verification of

3D/4D measurements of schools
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Emax = 7.5



Volume     = 240 000 m3

Spherisity = 0.19

Mean Sv = -44.2 dB

Emax,MS70 = 6.0

Emin,MS70 = 2.7

LBC,min = 93 m

3D measurements of schools

•Multi-beam, but single-frequency: morphological measures for species id

•Volumetric measurements and calibrated sv for quantification



3D measurement sequence

Per ping calculations
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Length S2 (mm)              

Verification of estimated length

(e) Estimated length (grey area in d) 

compared to trawl catch. Catch: 99.99% 

Euphausia superba (1000 kg) of 

S2=38.0 3.3 mm (= AT=46.2 4.1 mm). 

Estimated: 36 mm mean.

(d) Krill: orange synthetic colour

(a-c) Lengths of three schools
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Frequency

Size or

Resonant (e.g. fish larvae)

18kHz 200kHz

Swimbladdered fish

18kHz 200kHz

Small fluid-like

zooplankton

18kHz 200kHz

Large fluid-like 

zooplankton

18kHz 200kHz

Elastic-shelled

Fluid-like

Resonant

Species identification 

and size estimation



Length measures of euphausiids

(From Morris et. al, 1988



Conclusions

• Schools visualised during routine survey operations

• School descriptors calculated: in future to be used for 

reliable identification of the species of schools

• Zooplankton specimen size calculated from acoustic 

data and verified to give reasonable results.
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Thermoacoustic refrigerators: Time-domain
modelling and experimental setup

Stig Kleiven

Chalmers University of Technology
Division of Applied Acoustics, Dep. of Civil and Environmental

engineering, CHALMERS, SE-41296 Gothenburg, SWEDEN
Email: stig.kleiven@chalmers.se

Comments to the presentation

Most of the content in my presentation to the SSPA 2009 has been described
in more detail in other publications:

• The experimental setup presented is described in more detail in my
licentiate thesis [1].

• The equivalent source method (ESM) in the time-domain is described
in my licentiate thesis [1] and in the article [2].

• The finite difference (FD) model for thermoacoustic devices that was
presented was based on the model by M. Hamilton et al. [3].

• The combination of ESM and finite-difference time-domain (FDTD) is
described in the article [2].

• The combination of ESM and the two-step Lax-Wendroff scheme for
adiabatic wave propagation is described in the conference paper sub-
mitted to NOVEM 2009 [4].
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Long range sound propagation over a sea surface

Brodd Leif Andersson, Karl Bolin, Mathieu Boué, Alex Cederholm and Ilkka Karasalo

KTH - The Marcus Wallenberg Laboratory / FOI - Swedish Defence Research Agencya)

(Dated: January 2009)

This paper describes methodology and results from a model-based analysis of data on sound trans-
mission from controlled sound sources at sea to a 10 km distant shore. The data consist of registra-
tions of sound transmission loss together with concurrently collected atmospheric data at the source
and receiver locations. The purpose of the analysis is to assess the accuracy of methods for trans-
mission loss prediction in which detailed data on the local geography and atmospheric conditions
is used for computation of the sound field. The results confirm that sound propagation predictions
are accurate and reproduce observed variations of the noise level as function of time in a realistic
way. The results further show that the employed atmospheric model must include a description of
turbulent wind to ensure predicted noise levels to remain realistically high during periods of sound
shadow.

PACS numbers:

I. INTRODUCTION

In the light of global warming the transition to re-
newable power sources is a crucial challenge to today’s
society. A power source that will probably play a major
role in the future is wind turbine power. Until now most
of the wind turbines are land based, however large off-
shore farms are under construction or planned all over
the world. These will exploit the vast wind resources
available in this environment and by 2020 50 GW of in-
stalled capacity is planned worldwide1. Due to cost in-
creases with increasing water depth, off-shore wind tur-
bines are often situated in shallow waters near a coast,
and are therefore a corcern for causing noise annoyance

in coastal areas. Since atmospheric sound propagation
is highly dependent upon the prevailing meteorological
conditions, the level of such noise disturbances vary sig-
nificantly with time.

Measurement of long distance sound propagation over
water surfaces have been performed by2,3 but the me-
teorological conditions were only measured up to a few
hundred meters height. Predictions from this limited me-
teorological data could be considered insufficient. Knowl-
edge of meteorological conditions (wind velocity, humid-
ity and temperature) further up in the atmosphere would
improve the input to prediction models and consequently
improve the models’ accuracy. Furthermore long distance
sound propagation over sea has been measured?

The aim of the present paper is to present measure-
ments of sound propagation at 10 km distance4 and as-
sess the reliability of predictions the sound transmission
with numerical models which use detailed knowledge of
the meteorological and geographical conditions, by com-
paring the numerically predicted transmission loss (TL)
with the experimental data.

a)Electronic address: kbolin@kth.se

FIG. 1. Map of the Southern Baltic Sea with the Kalmar
straight shown by the red square.

II. MEASUREMENTS

The measurements were conducted between the 15:th
and the 21:st of June 2005 in the Kalmar strait and the
island Öland in the Baltic Sea, see Fig. 1. The mea-
surements were performed in the summer because most
annoyance from wind turbine noise could be expected in
this season. The source was situated 9 km from the shore
on the Utgrunden lighthouse (RT90 coordinates 6249616,

1527939). The receivers were located on the island Öland
750 m from the shore at 7 m above sea level (RT90 coordi-
nates 6251430, 1537445) (see Fig. 2 for the experimental
setup). This location was chosen because the facilities
available on the lighthouse permitted strong acoustics
sources to be mounted and the receiver point was at an
appropriate distance from the source.
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FIG. 2. In situ setup.

A. Acoustical measurements

1. Source location

Two sound sources were mounted on the lighthouse
roof at a height of 30 m. The first source was a
compressed-air-driven sound source (Kockum Sonics Su-
pertyfon AT150/200 with Valve Unit TV 784). It pro-
duced a 10-seconds signal on each occasion. The signal
from the source had an average level of 130 dB at the av-
erage frequency of 200 Hz. Moreover, the first harmonic,
at 400 Hz, was also measured. The siren presented vari-
ations of the order of 1% in frequency and about 20 dB
in sound level within each signal burst. This alteration
were caused by that the compressed air driving the sound
source lost pressure during the signal duration. To have
a constant and stable sound source and to investigate the
behavior of the sound propagation at other frequencies,
a second source, consisting of a sound generator coupled
to a loudspeaker and a 1.2 m-long resonator tube was
used. The loudspeaker produced a 1 minute long signal
at 80 Hz giving a constant sound pressure level of 113 dB
at 1 m distance. In front of both sources microphones
were recording the signals at a 1 m distance. Both sound
sources were employed simultaneously.

2. Receiver position

A microphone antenna was designed to increase the
signal-to-noise ratio. The receiver point was situated at
the houses closest to the shoreline, in a very quiet res-
idential area. Eight -inch microphones were placed on
a line parallel to the direction of the source location to
create an end-fire microphone array. The microphones
were placed at 1.7 m height accordingly to ISO 1996.
The distance between the microphones was set to 40 cm
to optimize the directivity pattern pointing toward the
sound source at 200 Hz. The signals were transmitted
through a preamplifier to an UA100 analyzer and then

FIG. 3. Directivity of the microphone array for 200 Hz.

processed in Matlab as explained below. The signals x(t)
of the N microphones were added with their respective
time delays τ as shown by Eq. (1)

s(t) =
1

N

N
∑

n=1

w(n)xn(t − τn) (1)

where w(n) are the binomial coefficients defined by
N !

n!(N−n)! , N is the total number of microphones,τn =

(n − 1)c−1d cosφ is the time delay of the n-th micro-
phone, xn the signal recorded by the n-th microphone,
d the distance from the source to the microphone, φ the
angle between the direction of propagation and the direc-
tion of the array and c the speed of sound. The directivity
patterns for 200 Hz is shown in Fig. 3. When atmo-
spheric conditions were unfavourable, the delay-and-sum
beamforming in 1 had to be combined with a frequency
tracking algorithm as descibed in4 (Ch. 4) to ensure de-
tection of the signal against the background noise.

B. Meteorological measurements

1. Source point

The wind speed was measured at 38, 50, 65, 80 and 90
m above sea level on a meteorological mast at the source
location. The wind direction was determined with wind
vanes at 38 m and 80 m heights. The temperatures were
measured at five heights: 6, 38, 50, 65 and 80 m. The
relative humidity was measured at 38m height. Data
from these sensors were registered at 10 minutes inter-
vals. The average average and standard deviations were
recorded during the measurement times.

2. Receiver point

Meteorological profiles at the receiver point were mea-
sured several times daily during daytime using radio
probes and theodolite tracking of free flying balloons5.
These measurements were performed by staff from the
Department of Earth Sciences, Uppsala University. Wind
velocity (horizontal components), humidity and temper-
ature were measured up to 3500 m height.
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III. SOUND PROPAGATION MODEL

Two principal requirements on a sound propagation
model suitable for the experimental scenario described
above are, first, that the model must allow for range de-
pendence in the atmospheric parameters as well as the
height of the lower boundary to sea and ground and,
second, that it must be able to handle propagation of
sound into shadow zones (diffraction effects) since the
atmospheric conditions were such that the receiver was
in sound shadow during more than 60 % of the trial
week. The first requirement is met by both ray trac-
ing and parabolic equation (PE) methods, whereas the
second requirement makes ray tracing methods less suit-
able because they predict the sound pressure to be zero
in shadow zones? . For this reason, a PE-method was
considered appropriate for current application.

A. The GFPE method

The Green’s function parabolic equation (GFPE)
method was developed by Gilbert an Di6,7 and later been
improved by Salomons8,9. The method is particularly de-
signed for atmospheric sound propagation and can use
considerably longer range-steps than conventional PE
methods. Because of its computational efficiency, the
GFPE model was used in this study.

The method computes a 2D field in the rz - plane where
r is the radial distance from the source and z is the
height. From the 3D Helmholtz equation for the sound
pressure, p, in cylindrical coordinates combined with a
variable substitution φ = exp(−ik0r)pr1/2 two expres-
sions (2) and (3) can be derived6,8

φ(r + ∆r, z) = exp

(

i
∆rδk2(z)

2kr

)

×

[

1

2π

∫

∞

−∞

(Φ(r, k′) + R(k′)Φ(r,−k′))

× exp(i∆r(
√

k2
r − k′2

− kr))e
ik′zdk′

+ 2iβΦ(r, β)

×exp(i∆r(
√

k2
r − β2

− kr))e
−iβz

]

(2)

where ∆r is the horizontal step size, k(z) = ω/c(z) is the
wave number, kr is a reference wave number (kr = k0 =

k(0) in this paper8). R(ḱ) = (k′Zg − kr)/(k′Zg + kr)) is
the plane-wave reflection coefficient, Zg is the normalized
ground impedance, β = kr/Zg is the surface-wave pole
in the reflection coefficient and Φ(r, k) is given by

Φ(r, k) =

∫

∞

0

exp(−ikz′)φ(r, z′)dz′ (3)

Equations (2) and (3) combined constitute the funda-
mental step in the GFPE-algorithm. In our implemen-
tation the integrals are computed by the midpoint rule,
and the propagation factor, first term on the RHS of Eq.
(2), is substituted by (4)

exp(i∆r[k(z) − kr]) (4)

FIG. 4. TL to the sea surface and the ground at 80 Hz as
a function of distance to the source. Predictions with JEPE
(red), normal mode (yellow) and GFPE (green). The compu-
tation times are also shown.

The starting sound pressure profile is a Gaussian function
of height z at range r = 0

φ(0, z) = k
1/2
0

[

e−ko(z−zs)2/2 +
Zg − 1

Zg + 1
e−ko(z+zs)2/2

]

(5)
where zs is the source height.

B. Parameter selection/Modifications

The parameters of the GFPE method were selected
guided by suggestions in Refs. 6, 8, 9. Thus, the hori-
zontal and vertical step sizes ∆r and ∆z were set to 10λ
and 0.1λ, respectively, where λ is the sound wavelength
at the ground, in accordance with recommendations in
Ref.8. To suppress spurious reflections from the upper
boundary of the computational domain an artificial ab-
sorption layer with thickness 75λ was imposed, with ab-
sorption parameter A calculated according to Ref.8. The
coefficient of attenuation of sound in air was calculated
according to ISO/DIS 9613-110.

C. Validation

Our implementation of the GFPE model was vali-
dated by comparisons with the reference cases consid-
ered in Ref.6, and showed perfect agreement with the
results published there. To assess the efficiency of the
GFPE method and further validate our implementation
it was compared to a normal-mode (NM) method and the
PE method JEPE11, in a range-independent approxima-
tion of the geometry of the current application and with
the atmospheric parameters observed experimentally at
20:00 on June 17. Fig. 4 shows the transmission loss for
80 Hz sound to the sea surface and the ground as func-
tion of range computed by the GFPE, JEPE and NM
methods, together with the required computation times.
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D. Turbulence

Effects of turbulent wind and temperature fields were
included in the GFPE model following the approach out-
lined in Ref.9. Thus, the turbulent components of these
fields are modelled as homogeneous random fields with
von Karman type horizontal wavenumber spectra. The
effect of such turbulence on the GFPE solution is repre-
sented by including a random z-dependent phase factor
in the GFPE propagator, without requiring explicit com-
putation of a realization of the fields [Appendix I and J]
in Ref.9. According to this turbulence model the trans-
mission loss to the receiver is a stochastic variable, and
the statistics of the transmission loss were determined by
carrying out 50 Monte Carlo runs for each frequency at
every hour during the measurement period.

E. Atmospheric/Meteorological assumptions

Meteorological input to the GFPE model were both
the balloon measurements (horizontal wind velocity), ra-
dio balloon (relative humidity and temperature) and the
anemometers on the mast (standard deviation of wind
speed). The balloon measurements were used as me-
teorological parameters for the stationary parameters
(U(z), rh, T, p) while the mast data were used to esti-
mate the turbulence intensity. Linear interpolation was
used between measurement points in the vertical direc-
tion as well as in time.

IV. RESULTS

As previously stated the objective of the paper is to
investigate the accuracy of numerical predictions of the
transmission loss compared to measurements. The re-
sults are shown in figures 5 and 9 using an atmospheric
model without and with turbulence, respectively.

A. Turbulence excluded

The black diagrams in Fig. 5 show the simulated
TL, the average values during measurement periods are
shown as green lines. Measured TL are shown as red
dots and average values are shown as yellow lines. A
dotted red line shows the TL calculated by the recom-
mendations from Ref.12 with the transition point be-
tween spherical and cylindrical spreading at 700 m dis-
tance from the source. The Dn values shown in the lower
left corner are normalized differences between measured
and predicted TL. These are defined as the average differ-
ence between measured and predicted TL divided by the
measurements’ standard deviation at each day. It can be
clearly seen that the prediction shows larger differences
in TL than the measured results. The cases with high
TL show good agreement with the measured TL. How-
ever, the periods where the measured TL is low are are
severely underestimated by the predictions. The low TL
values occur when the sound speeds are monotonically or

(a) 80 Hz

(b) 200 Hz

(c) 400 Hz

FIG. 5. Measured and predicted TL for the laminar simula-
tion.

nearly monotonically decreasing with increasing height.
The emitted sound is then refracted upwards and shadow
zones occur by the receiver location. A typical occasion
showing this condition is shown in Fig. 6. The high TL
values occur when the sound speed has a local maximum
at relatively low height (for instance caused by a low level
jet5). Such meteorological conditions were prevalent e.g.
during the afternoon of June 17. At these circumstances
the sound is refracted downwards and trapped within a
channel restricted by the local wind maximum as can be
seen in Fig. 7.
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FIG. 6. Sound speed profile (left figure) and simulated 80 Hz
sound field (right) at 12 am the 16 June. Upwards decreasing
sound speed can be observed. The shadow zone at the receiver
location is also clearly seen.

FIG. 7. Sound speed profile (left figure) and simulated 80 Hz
sound field (right) at 12 am the 17 June. A local maximum of
the sound speed can be observed at 200 m height. The sound
channel below the local maximum can be observed at the low
heights in the right figure.

B. Turbulence included

Simulations including a turbulent field were observed
in Ref9 to decrease the amount of refraction, especially in
the upward refracting case. In Fig. 8 the turbulence has
been included in the sound speed profile used for the Fig.
6. The difference between the sound fields is mainly that
the shadow zone is less pronounced for the sound field in
a turbulent atmosphere. In Fig. 9 the simulations includ-
ing turbulence are shown. The thick black diagram shows
the average value of the TL from the Monte Carlo simu-
lation and the thinner black lines surrounding these show
the interval of the standard deviations, thereby showing
the sensitivity of the predicted TL with respect to small
disturbances in the wind field. Other symbols in the fig-
ures are defined as in Figs. 5. Comparing Fig. 5 and Fig.
9 it can be seen that the most prominent effect of tur-
bulence on the predictions is a significant decrease of the
TL during periods of sound shadow at the receiver. This
is explained by the random scattering of the sound by the
turbulence-caused random inhomogeneities in the sound-
speed, leading to an increased sound propagation into the
shadow zones. As seen in the figures and indicated by the

FIG. 8. Sound field shown as TL of the 16:th June at 12 am
including turbulent wind field.

Dn values shown, the agreement between the model pre-
dicted and the experimentally observed transmission loss
has thereby is significantly improved by including effects
of turbulence in the predictions.

V. DISCUSSION/ CONCLUSION

The results support that sound propagation modelling
including effects of detailed meteorological data can be
used for reliable prediction of transmission loss. In partic-
ular, the predicted TL remains reasonably accurate un-
der varyning meteorological conditions, and follows the
variations observed in the TL measurements in a real-
istic way. The results further indicate that the sound
propagation model must include effects of turbulence in
the atmosphere for accurate predictions of the TL into
shadow zones.

It should be noted that the largest remaining differ-
ences between measured and predicted (including turbu-
lence) TL can be observed around noon and early after-
noon at the 16:th and 20:th. This could probably be ex-
plained by the higher turbulence intensities around these
times13 compared to other times during the day. The
high turbulence levels would cause the balloon measure-
ments to deviate further from the assumed laminar flow.
However, turbulence intensities are quite weak over sea
surfaces and therefore this would probably not affect the
results to a large extent. Furthermore the inertia of the
balloon would also reduce the influence of the smallest
eddies. Most important eddy sizes around wavelength9

(0.8-4 m) some influence due to balloon’s inertia should
be possible/probable in this range.
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(a) 80 Hz

(b) 200 Hz

(c) 400 Hz

FIG. 9. Measured and predicted TL for the turbulent simu-
lation.
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Modeling of transient wave propagation in Comsol 
Anders Løvstad, IET, NTNU 

Abstract 

This paper evaluates the use of simple exponential damping layers as perfectly matched layers (PMLs) for 

transient wave propagation analyses in Comsol Multiphysics v.3.5, as time domain implementation of 

PMLs presently is unavailable. Dispersion curves for the fundamental transversal mode are calculated, in 

addition to error estimation in time-space plots.  

Introduction 

Conventional methods such as point-to-point measurements using pulse-echo techniques are used 

successfully to monitor structures locally at high accuracies. However it is a slow process, which 

becomes expensive when larger areas are to be inspected. By employing guided wave techniques, 

longer ranges can be inspected as complete coverage of the waveguide is enabled. Inaccessible 

areas can be reached, as guided waves can propagate within the structure even if it is buried, 

coated, fluid filled or located subsea. 

Guided waves consist of multiple independently propagating modes, existing in smaller or larger 

extent in the waveguide. With a few exceptions all modes of propagation are dispersive, i.e. the 

velocity is frequency dependent. Despite careful excitation of a wanted mode, other modes can 

also appear as a wave propagates through refraction at boundaries or from interaction with 

discontinuities or defects [1]. 

For simple geometries like plates and cylinders, analytical expressions exist for calculation of 

dispersion curves [2]-[4]. However, with more complicated geometries this is not the case, and 

employment of Finite Element (FE) software is then useful for simulation and evaluation of 

physical properties of the structure as defect detection and location. This paper discusses a few 

challenges with time domain calculations in Comsol Multiphysics [5]. To obtain dispersion 

curves using a time domain approach, signals at two points are obtained and FFTs are 

subsequently carried out to evaluate in the wanted frequency range. A problem arises as perfectly 

matched layers (PML) are not available in the time domain in Comsol, so an ad hoc approach for 

creating a PML is performed and evaluated. 

Dispersion relations 
The dispersion relation of a medium is determined from the phase spectrum of the propagating 

pulse as 

( ) ( ) ( )( )ωϕωϕωβ 0

1 −= −
L  (1) 

where L is the distance between two measurement points and φ denotes the phase spectrums. The 

phase velocity can then easily be found [6] as 

( )
( ) ( ) ( )ωϕωϕ

ω

ωβ

ω
ω

0−
==

L
vph  (2) 

As the main concern of this paper is to evaluate simple custom implemented perfectly matched 

layers in the time domain, only the fundamental transversal mode, A0, is investigated. If the time 



signal is composed of a number of propagating modes, a two-dimensional FFT of waves received 

at equally spaced positions along the structure must be performed, as described by Alleyne and 

Cawley [7]. 

Time stepping and meshing 

A simple plate with dimensions similar to typical cross sections of a pipe wall is chosen as 

example structure. The plate is excited with prescribed transverse displacements, as shown in 

figure 1.  

 
Figure 1: Transverse excitation. Thickness of the pipe wall is 11 mm. 

A Ricker pulse is used as excitation signal, with a central peak at 100 kHz and delayed 1e-5 

seconds. The Ricker is uniquely specified through its peak frequency. With the time delay, t0, 

included, the Ricker is mathematically given as 

( ) ( )( ) ( )2
0

2
0

22

0

2

0

221
ttf

ettftR
−−⋅−−= ππ  (3) 

Sufficient temporal and spatial resolution of the model is critical for its convergence. By applying 

the minimum time step criterion proposed by Moser et. al. [8] 

( )max201 ft ≤∆  (4) 

a time step of 1e-7 seconds accounts for frequencies up to 500 kHz. A quadratic mesh is 

employed throughout the calculations, with a maximum element size of 4 mm, as depicted in 

figure 1. Comsol Multiphysics recommends a minimum of 5 nodes / λ, while more than 10 nodes 

/ λ are proposed in [7]. Thus the spatial resolution limits the obtainable resolution to a larger 

extent than the temporal resolution. 

Comsol recommends generalized-α [9] solver when solving transient problems with the structural 

mechanics module (SME). A problem arises when results are exported to MatLab for post-

processing as the solver occasionally performs two calculations at the same time step. The time 

vectors thus consist of uneven time steps and an FFT cannot be performed. The duplicate values 

must be deleted in post processing. 

Perfectly Matched Layers (PML) 
Reflections from impedance steps at model boundaries affect calculations unless they are taken 

properly care of. This is commonly done by various implementations of perfectly matched layers 

(PML). However such layers are not available in the time domain in Comsol, i.e. for transient 

analysis and calculations. An ad hoc approach to obtain suitable PMLs is to use damping layers at 

model boundaries, typically increasing quadratically or exponentially with distance. If the 

damping increase to rapidly with distance, the damping layer will be seen as an impedance step 

by the incoming wave, while to slowly increasing damping results in reflections from the end 

wall. 



PML length of >3λ at the peak frequency is chosen as limit requirement. As this relates the length 

of the PML to the frequency content of the signal, the exponential damping is simply scaled by 

the damping factors so that they are equal at the boundary, i.e. 

( ) Lx

boundarydM exx −α      and     ( ) Lx

boundarydK exx −β  (5) 

Results 

The resulting phase velocity for the A0 mode is calculated using both the quasi PML approach, 

and the dummy solution of a semi-infinite structure, as can be seen in figure 2. The results can be 

seen to be very similar. Using a finer mesh results in more accurate results at high frequencies, as 

the mesh captures shorter wavelengths. 
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Figure 2: Phase velocity of A0 mode. 

Time-space diagrams show the wave propagation and attenuation as the wave propagates along 

the structure and into the damping region. Figure 3 show the amplitudes (normalized) of a) the 

structure with PML, and b) the semi-infinite implementation. The black line marks where the 

PML begins when it is present. As can be seen, the propagation is dispersive, as the wave packet 

spreads out in time. The PML can be seen to damp the signal out within its length. 

 
Figure 3: Time-space diagram of wave propagation; a) PML b) Semi infinite. 

a) b) 



By subtracting the amplitude levels of the PML solution from the semi-infinite one, the 

calculation error is obtained. Errors are found to be in the range of 1:1e-4 compared with the 

amplitude levels of the incident waves to the PML. Figure 4 shows resulting error level, scaled by 

1e-3 and 1e-4 relative to the incident amplitude in plot a) and b), respectively. 

 
Figure 4: Time-space diagram of wave propagation; a) Scaled by 1e-3 b) Scaled by 1e-4. 

Results 

As time domain PML implementations are not available in Comsol Multiphysics, the ad hoc 

approach described above seems to give reasonably good results, despite not being optimized to 

any larger extent. Accurate dispersion curve was calculated for the A0 mode with use of the 

procedure. 
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Introduction 
I have chosen this topic for the talk since this is probably my last chance to tell the history, and 
since my academic career is closely related to the parametric acoustic array.  The parametric 
acoustic array represents a turning point in the interest for nonlinear physical acoustics world wide, 
and therefore has a strong impact on the evolution of acoustics in general.  My intention is to tell 
the story from my personal viewpoint, not the least because it also has had a great influence on the 
activity in acoustics at the University of Bergen, and therefore also on the acoustics community in 
Bergen more generally.  The story is, of course, incomplete.  It is not possible to include everything 
that happened in these 50 years. My personal engagement in the field was only for the first 20 
years.  I must apologize to those who contributed to the field which I have not included, like for 
example parametric arrays in air. I have concentrated on activity directly influencing my own work. 
Therefore, the bibliography is far from complete. 
 
Some of you may be unfamiliar with the concept of parametric acoustic arrays.  I shall not start by 
defining it, but it will become clear in a while what it is about.  I also shall try to avoid equations – 
even if I shall not resist the temptation completely. 
 
Prehistory 
I shall start a little time before the parametric acoustic array enters the scene.  The history of 
nonlinear acoustics can be traced back to the time of Euler and Lagrange, but the modern evolution 
started in the 1950s.  There were two dominating centers of such activity: USSR (Moscow State 
University) and USA (Brown University at Rhode Island).  In the Sovjet names like Burov, 
Krasil’nikov,  Zarembo, Zverev, Kalachev, Gol'dberg (does the Goldberg number sound familiar?), 
and later Naugol’nykh, Soluyan and Khokhlov comes to my mind, and in USA in particular Eckart, 
Westervelt and Beyer, among others.  Robert Beyer, in addition to being a very clever 
experimentalist, also did a great job as a translator from Soviet journals.   
 
In 1956 Ingard and Pridmore-Brown at MIT [1] performed an experiment on nonlinear interaction 
of two highly directional sound beams crossing each other perpendicularly, and found that sound 
actually was present at the difference frequency, the frequency which is  the difference between the 
two original ones. Shortly after this Westervelt published theoretical results [2,3]  concluding that 
outside the interaction region no sound due to the interaction should be detected.   This caused a 
controversy which to this day has not been completely settled – I heard Westervelt argue about this 
as late as  in 1995, in spite a lot of experimental evidence to the contrary.  Some simple arguments 
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may be of interest here: Two conditions must be fulfilled in order to obtain constructive nonlinear 
interaction.  In addition to the simple relation between the generated and the original frequencies, 
also the wave-vectors must correspond.  Since they are vectors, and their lengths are proportional to  
frequency, this cannot be fulfilled unless the medium is dispersive if the original waves propagate 
perpendicularly to each other.  However, in an experiment perfect collimation will not be achieved, 
and the possibility of  constructive interaction still remains. Anyway, this controversy excited a lot 
of attention. 
 
Enter the parametric array 
Then, in 1959, Westervelt launched the idea of the parametric acoustic array [3], by aligning the two 
sound beams of different frequencies along the same axis.  This concept was presented at an ASA 
meeting in 1959, and concluded with an expression for the difference frequency directivity in terms 
of a function formally related to the Rutherford scattering formula for electrons scattered by an 
atomic nucleus. Of course this was exciting!  Moreover, he referred to this as being confirmed by 
experiments by Beyer and colleagues.   
 
Avoiding formulas the concept may be described as follows.  Westervelt assumed two well 
collimated, high frequency, axially aligned sound beams propagating in the same direction. The 
beam diameter was assumed to be less than the wavelength of the difference frequency, so in 
practice the primary sound beams were like confined to a line (“pencil beam”).  The high frequency 
primary waves become absorbed, and after some distance (the array length) they disappear.  Before 
this they interact nonlinearly, and generate a wave of difference frequency, which is able to 
propagate much further.  This wave acquires a directivity much higher than one should expect from 
the narrow beam diameter.  Instead, it is determined by the length of the interaction region, which 
may be much larger than the difference frequency wavelength. 
 
The details were published quite some time after:  The experiments by Bellin and Beyer [5] in 1962, 
and the theory by Westervelt [6] in 1963. By the way, the notion of “Parametric Acoustic Arrays”, 
or “Parametric End-Fire Array” as Westervelt first introduced, may need some explanation.  The 
phrase Parametric comes from an electromagnetic analogy.  In microwave technology a certain 
amplifier type was well known, based on using a high energy high frequency wave as a pump wave 
together with nonlinear elements like capacitors in a waveguide to amplify a weak wave by 
frequency conversion as the waves propagate.  Such devices were called Parametric Amplifiers. 
 
At this time Sigve Tjøtta enters the scene.  He had spent a year at Brown University before coming 
to Bergen about 1960, with a keen interest i nonlinear acoustics, which also was the topic of his 
doctor thesis [7].  He soon took up the idea of Westervelt and wanted to develop the theoretical 
description in full detail.  Typical of his approach was a clear analysis based on fundamental 
equations, and a complete evaluation of the unavoidable approximations made. Together with Viggo 
Lauvstad he presented the first results  [8] already in 1963 – in the same issue of JASA as 
Westervelt’s paper was published - and a more developed paper [9] came in 1964. 
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Note also the third author in the last paper: Jacqueline Naze.  At this time she was a post. doc. at the 
institute of Applied mathematics, with plasma physics as a speciality. Sigve had started a research 
group in plasma physics while building up the institute,  and attracted several researchers and 
master students.  More on plasma physics below. Anyway, Jacqueline was soon to become Sigve's 
wife, and they were later to be known as a leading team in non linear acoustics.  However, it took 
many years before Jacqueline actually switched to acoustics after this brief interlude. 
 
In this paper they derived the governing equations describing the parametric acoustic array more 
rigorously than Westervelt did, and applied them to different models, among which were collimated 
plane primary waves, not restricted to Westervelt's «pencil beams» or «line array». The directivity 
then turned out to be even higher, because the effect of the finite aperture on the difference 
frequency was included! They also calculated for a model where the primary beams were 
interacting only in their far field. Results from their analysis of collimated plane beams were also 
published[10] in a short communication in JASA in 1965. 
 
Some basics 
So far I have not mentioned much about the physics behind the parametric acoustic array.  It is not 
time to go in much detail either, but certain facts need to be established. Basically we need two high 
power sound beams radiated from the same source, or at least so that most of the beams overlap in 
space. At high power the nonlinearity of sound propagation causes the waves to deform: if they are 
initially sinusoidal they deform to sawtooth-like shape. This can be expressed as if energy is 
transformed from the fundamental wave to higher harmonics. If two primary frequencies are present 
also combination frequencies appear, like difference frequency and sum frequency. Since the 
absorption coefficient of sound is proportional to the frequency squared, the higher harmonics and 
the sum frequency become absorbed even faster than the primary frequencies, but the difference 
frequency may propagate further than the primary waves. Thus, this arrangement acts like a sound 
source for the difference frequency. However, the efficiency is rather low since most energy 
disappear to the higher harmonics. 
 
One way to describe this is as if the beam volume consists of virtual sources, and the resulting field 
can be obtained by summing the contribution of these. The phase of the virtual sources propagates 
with the sound speed, and accordingly constructive interference exists in the beam direction. One 
may thus regard this as an extended  source, phased to radiate along its direction, what in radio 
antenna theory is called an «end-fire array». 

Figure 1: Two of the basic types of parametric 
arrays 
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The length of the array may be long compared to the difference frequency wavelength, and 
therefore a high directivity may be obtained, even if the beam diameter may be less than the 
wavelength.  The length of the array depends on absorption. The phase of the primary waves 
changes by /2 as one passes from the near-field to the far field. This does not affect the phase of 
the virtual sources for the difference frequency (but it does for the sum frequency and second 
harmonics!). But in the farfield  the wavefront curvature induces a phase shift between 
contributions from the beam centre and the beam edge.  The result is a less efficient conversion than 
in the nearfield, and it also effects the directivity pattern. We shall refer to arrays with main 
interaction in the farfield as “Type III” arrays, while “Type I” are those with interaction only in the 
near-field. The original pencil beam Westervelt type is Type II. The difference between the two 
main types of parametric arrays is illustrated in Figure  1.  
 
First experiment in Bergen 
In want of experimental confirmation Tjøtta wished to encourage measurements to be made on 
parametric arrays. This is where I enter the scene.  At this time the University of Bergen was quite 
young – barely 15 years old.  At the Physics Department - actually 3 sub-departments - the research 
activity was rather limited: nuclear physics, high energy particle physics (CERN activity), cosmic 
rays and ionospheric physics, theoretical physics (nuclear, atomic) and plasma physics.  The latter 
was largely unknown to most students.  Due to lack of space at the institute they had to rent rooms 
at Institute of Marine Research  about half an hour walking distance away. I was about to finish my 
bachelor degree in 1963, and succeeded to get a job as a technical assistant in the Plasma physics 
group, planning to proceed with a master thesis.  However, already in 1964 it was decided to 
dismantle the experiment and move it to the Norwegian Technical University in Trondheim.  So, I 
had to find a new project for my further studies, and thus became an easy target for Tjøtta, who 
perhaps felt to some degree a responsibility for the closure of the plasma physics group.   By the 
way, theoretical plasma physics has been a main activity at Institute of applied mathematics in 
Bergen since then, almost to these days. 
 
It was a slow start.  The Institute of Mathematics  had no experimental facility to offer. Professor 
Trumpy, the head of the  Physics department, showed no interest in starting a new activity in 
acoustics.  I approached the physics department at University of Oslo, with the same result.  Also 
the people at Norwegian Underwater Defense Research institute in Horten turned me down.  And I 
don't blame these people.  Here comes a prospective master student with no previous experience in 
acoustics and wants to start an experiment in almost un-thread grounds?  
 
To make the story short:  Tjøtta and Trefall (newly appointed professor in cosmic physics at 
Department of Physics)  joined forces, applied to the University council for funding, and got it!  
NOK 15 000 was made available (the present day equivalent is about NOK 250 000). Professor 
Trefall was about to expand his department, and I was to  build up the tools necessary to perform 
the experiment.  From scratch!  Both Tjøtta and Trefall were to act as supervisors. 
 
Soon after, Jacqueline and Sigve Tjøtta, on their honey-moon, were subject to a serious car 
accident.  They just barely survived, and it took several months for recovery.  They had left me with 
the report from 1963 and a preprint of their new article (1964).  For me, with only a general physics 
students knowledge of acoustics, this was tough material to penetrate.  Luckily, I also had Bellin 
and Beyer's experiment to rely on. 
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The lay out of Bellin and Beyer's experiment was only briefly sketched[5]. These were the days 
before broadband power amplifiers were easily available (if at all!), and for driving the sound 
source they used two short wave radio transmitters.  The source was a disk of quartz resonating at 
13.5 MHz, and the receiver a cylinder of barium titanate 1/16 inch wide and resonating at 1 MHz, 
which was the difference frequency. These were my initial conditions, so to speak.  Figure 2 shows 
the diagram of my version.  Quartz disks for the sound source were obtained from a  company 
called Norwegian Mining (no longer existing), with resonance frequency 17.1 MHz.  They had a 
radius of 6.5 mm.  Two radio transmitters were bought from Heathkit – a company producing 
amateur electronics kits. The most difficult part of the experiment design was how to connect the 
transmitters to the sound source while avoiding energy from the one to enter the other and cause 
nonlinear electronic generation at the difference frequency! 
 
Since I am proud of the solution when I finally found it, I cannot resist the temptation to show at 
least one part. The concept consists on using a very sharp series resonance circuit close to the 
transmitter of frequency 1, tuned to frequency 2.  The Q-value had to be high – several hundred, 
and was a challenge by itself to build, since it needed to handle high powers.  Between this and the 

Figure 3: Diagram of the first Bergen experiment
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crystal was a PI-filter tuned to frequency 1, and characteristic impedance adjusted to match to the 
crystal impedance. For frequency 2 the PI-filter transformed the short circuit provided by the series 
resonance to a very high impedance.  This stopped frequency 2 from penetrating the filter, while 
frequency 1 passed to the crystal with near optimal conditions.  
 
Figure 3  is copied from my master thesis. The curve indicates the impedance of the series 
resonance for the lower frequency.  A similar filter was built and tuned to the other frequency, and 
both were connected at the terminal of the crystal. In those days the impedance analysers available 
today was only something we could dream of. Instead we bought a Marconi Q-meter, which turned 
out to be very useful. In addition to help building the filter,  it's oscillator was used to generate one 
of the primary frequencies. 
 
Nonlinearities can be generated everywhere, and to avoid the primary frequencies to enter the other 
transmitter through the power line an isolation filter using ferrite beads and capacitors was 
constructed for the power line. Also note that the radio transmitters were used in continuous mode – 
it turned out to be too difficult to key them with accurately timed pulses. 
  
I'd like to say some words about the sound source as well.  Recall that this was my first attempt to 
build such a device, and there were no-one around to ask for advice.  The workshop people were 
very helpful in making the parts, of course.  Figure 4 shows  a cross section.  It was housed in a 
brass container mounted on a copper tube, letting the coaxial cable pass through. The crystal was 
glued to a lucite (plexiglass) disk, and the front face and back electrode was silvered by vacuum 
deposition of silver.  Such equipment is regrettably no longer available to us. The back electrode of 
the crystal was connected trough a spring contact to an inductance, whose purpose was to cancel out 

the parallel capacitance of the transducer disk.   
 
The tank was built of plywood and made waterproof by covering the inside with artificial resin 
(“Beo-dit” – related to Araldite). It was 2 m long and half a meter in cross section, both height and 
width. The sound source was mounted in one end at middle depth, and a suspension system 
consisting of an aluminium bar of square cross section was used to hold the receiving probe, 
allowing it to glide along the bar, and also measuring the directivity by rotating the bar.  The bar 
was arranged to rotate about an axis passing through the front face of the crystal. The position of the 

Figure 4: Cross section of the primary sound source
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slide could be monitored electrically by a single resistance wire acting as a potentiometer, 
connected to an XY-recorder.  A similar system monitored the rotation angle. 
  
Since continuous waves were used an absorbing device was mounted in the far end of the tank to 
reduce reflections.  It took about half a meter of the available tank length 
 
The probe itself consisted of a coaxial needle hydrophone with a BaTi element, 1mm diameter, 
resonant at 1 MHz, and a cathode follower (miniature electron tube) mounted inside a brass tube to 
which the needle hydrophone could be screwed. Later several different needle hydrophones were 
build, using the same probe holder and electronics. A complicating factor was the need for both 
high voltage and filament supply to the tube, along with the signal cable. 
 
The rest of the experimental set-up is fairly standard.  The signal from the probe was amplified and 
led to a RF-Voltmeter, whose output was brought to the XY recorder together with the positioning 
signal. 
  
The experiment did produce some new results.  The build-up of the amplitude along the axis, and 
later fall off,  was demonstrated, and the directivity was mapped in quite some detail.  The results 
were published [11] in Journal of Sound and Vibration in 1967, soon after I had finished my master 
degree. 
 
Figure 5 shows the measured amplitude along the axis of a parametric acoustic array of frequency 1 
MHz, generated by primary waves of 16.6 and 17.6 MHz.  The so called array length, which is a 
measure of the efficient length of the interaction region, mainly determined by absorption of the 
primary waves, is about 6.5 cm.  The near field length of the primaries are about 0.5 m, so 

interactions take place well inside  the near field of the primaries (Type I array). 
 
The fact that the sound field vanish as one approaches the source is assuring that the difference 
frequency sound is not radiated by the source.  Actually electromagnetic radiation at the primary 
frequencies could be detected very close to the source, but this caused no problem at the difference 
frequency.  Later we shall see that the details very close to the source is a bit more subtle, but that 
was not discovered in the first measurements. 
 

Figure 5: Axial pressure as a function of distance. k_a=27.5. 
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The position of the maximum turned out to depend on the intensity of the primary waves, moving 
closer to the source with increasing intensity. Trying to explain what determined the position of the 
maximum, and its  dependence on intensity, became a challenge for the following years. Instead of 
presenting the directivity patterns directly, Figure 6 shows the half pressure angle, Ө 6dB, as a 
function of ka (the beam radius times the difference frequency wavenumber) , compared with 
theoretical predictions. However, as with all the models available at this time, only far field results 
could be calculated – that is far field in terms of the array far field, the extent of which was not easy 
to estimate. My measurements were definitely in the near field of the array. 
 
The beam radius was changed by putting apertures of different diameter in front of the source.  The 
accuracy of this procedure may be questioned, and was not used later, but at least some indication 
of the tendency was obtained.  
  
What is evident is that the beam-width is more narrow than predicted by the Westervelt formula, 
and plane collimated primary waves (Tjøttas).  The last curve (C) is predicted for direct radiation of 
the difference frequency from the source. 
 
 

 
 
Contemporary activity 
Before this, at about the same time as I started on putting up the experiment, another research group 
entered the scene.  In 1965 Orhan Berktay at University of Birmingham published[12] a model 
similar the Tjøttas, but with a square beam cross section instead of a circular, using the argument 
that the near field in a square beam is more regular than in a circular.   I shall comment on this issue 
below.  
 

Figure 6: Measured half-pressure angles and theoretical 
models: A - collimated plane waves, B - diverging primary 
waves (Type III), C - directly radiated from the piston, R - 
Westervelt model. 
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Berktay also presented some experimental results of the beam-width of the square beam parametric 
array. Figures 7 and 8 are borrowed from Berktay's paper [13] in 1965, where Bellin and Beyer's 
results were reproduced.  Both plots are in log-log scale, and difficult to get accurate data from.  
The horizontal axes are difference frequency in MHz, vertical: half pressure angle in degrees.  
 
The frequency dependence of Bellin and Beyer's measurements follows that of Westervelt’s model, 
but the half power angles are much smaller.  Curiously they are broader than if the difference 
frequency was radiated directly from the source!  I shall return to this in below.  In contrast, 
Berktay's results seem to follow Westervelts model rather close, although even here with a more 
narrow beam-width.  But now directly radiated difference frequency is much broader!  Their 
experimental set-up is poorly described, so a comparison between their experiment and mine is 
difficult. For example, it is impossible to determine to which extent  interaction took place in the 
near-field or in the far field (or both). 
 
Berktay’s paper also contains another interesting study, related to the parametric array: namely the 
nonlinear demodulation of a high frequency sound burst, finding that after propagating so far that 
the high frequency wave was damped out there would be a remainder which can be described as the 
second time derivative of the envelope of the original burst.  This was later confirmed 
experimentally, first by Moffett in 1969 [14]. 
 
As mentioned above, the nonlinear acoustic community was small and wide spread, but it started to 
grow after 1960.  Of considerable importance were the papers by D. Blackstock in Rochester, and 
later Austin, where he managed to bridge various models and concepts from the past to show a 
unified understanding. They are of outstanding quality, and has had a great impact on the teaching 
of nonlinear acoustics up to these days. 
 
The first occurrence of parametric acoustic arrays in USSR was, I think, by Zverev and Kalachev in 
1968 [15], describing their experiment. At the time of the cold war interaction with east was 
delayed a lot because Russian publications had to be translated and typically were published a year 

Figure 7: Beamwidth after Bellin and Beyer. 
Curve I - experimental results, Curve II - 
Westervelt's model, Curve III - directly 
radiated from piston. After Berktay [13]. 

Figure 8: Beamwidth after Berktay [13]. 
Curve I - Westervelt's model, Curve II - 
collimated plane waves, Curve III - directly 
radiated from piston,  and several measured 
points. 
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later.  The original paper was actually submitted in 1965. They presented axial amplitude variation 
and  higher than predicted directivity of the difference frequency, similar to the findings in Bergen.  
  
In these years considerable interest was also focused on the possibility to use the parametric 
interaction to amplify acoustic waves directly, in analogy with the electromagnetic process 
mentioned initially.  It soon became clear that this is not easy.  Amplification requires third order 
interaction, incorporating both the difference and sum frequencies.  However, their combination 
with the fundamental frequencies act in opposition to each other, and the sum frequency needs to be 
blocked in order to obtain amplification [16].  This would not be the case in the presence of 
dispersion, but as you know dispersion is in general very weak in acoustic waves.  Another problem 
is logistics: the distance from the source of the pump wave to the receiving hydrophone needs to be 
many wavelengths, and may be impractical to handle. 
 
Acoustic streaming is another of Sigves Tjøtta’s favourite nonlinear effects. Both theoretical and 
experimental investigations on boundary layer streaming and streaming due to sound waves in a 
stratified medium (related to radiation pressure) was made during the 1970ies. This, however lies 
outside the scope of this account.  
 
 
 
The earliest ISNAs 
The first symposium devoted to nonlinear acoustics was arranged in 1968, by US Navy.  It was 
almost closed, but is still counted as the first ISNA (International Symposium on Nonlinear 
Acoustics). The proceedings was published in 1970 and contained 5 presentations, but only one on 
parametric arrays, by Berktay. 
 
In 1969 the next symposium was arranged in Austin, Texas, with 10 presentations, two of which 
were devoted to parametric arrays: Berktay, and for the first time Muir along with Blue.  Both 
presented experimental results, mainly with beams interacting in the farfield. A wide variety of 
nonlinear acoustic phenomena were discussed, and the proceedings [see 14], which appeared some 
two years later, gives an interesting cross section of the activity in USA in the late 60-ties. This was 
the second ISNA, which has since been followed almost regularly every 3 year, with a few 
exceptions with a 2 year cyclus. 
 
Tom Muir, at that time  a PhD student at Applied Research laboratory (ARL), University of Texas at 
Austin, was to become one of the leading persons in nonlinear acoustics, not only on parametric 
arrays. Muir’s experiment was made in fresh water, in lake Travis, where the laboratory had a 
research float.  The frequencies were much lower than in previous experiments, and accordingly the 
ranges involved longer.  They measured the field along the axis of the beam, where the array length 
was much larger than the nearfield length.  These were  to my knowledge the first results for a Type 
III parametric array. Figure 9 [17] shows one of their plots – note logarithmic scales on both axes. 
Here the build up of the difference frequency field may be seen. 
 
Figure 10 shows directivity of difference frequency, compared to Westervelt’s model and Naze-
Tjøtta’s (1964).  The half pressure angle is wider than Westervelt’s prediction in this case.   
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What does not appear from this figure is that it is approximately equal to the half pressure angle of 
the primaries. We shall return to this issue subsequently. 
 
Next activity in Bergen  
After finishing my master degree I was awarded a fellowship to go on with investigations on the 
parametric array. By 1968 University of Bergen had got a new IBM 360 computer, the wonder of its 
time, and this inspired attempts to compute the parametric array by first computing the primary 
nearfields, and then the interaction leading to the difference frequency.  It was soon found that this 
was beyond the computer's capacity (far less than a modern PC!).  
 
Thus, the nearfield had to be approximated, and the task to get more information on this was 
undertaken. Up to that time the nearfield was only calculated for ka values less than about 5. In 
addition some very approximate solutions existed for the region near the axis.  In our case ka values 
for the primaries were near 80. A numerical code was developed, which showed that the field out to 
half the last axial maximum (at a2/ ) behaved very much like a collimated plane wave, except for a 
narrow region about the axis. The model and results were printed in a report [18] in 1970, but never 
sent to a journal for publication.  Just a little time after this Zemanek [19] published a similar study 
in JASA. 
 
I could spend quite some time discussing the nearfield alone, but not this is not the place. Just one 
comment. Along the axis the pressure amplitude in a circular cross section beam, due to the 
symmetry, oscillates a lot, and it was believed that this dominated most of the near field outside the 
axis also. The numerical results demonstrated, however, that these oscillations were confined to a 
very narrow region around the axis.  Further away from the axis a plane wave is a good 
approximation. A beam of rectangular cross section lacks some of the symmetry, and as calculated 
by Freedman [20], the axial fluctuations are much smaller.  This was the argument Berktay used for 
selecting rectangular primary beams. In practice the difference may be ignored when parametric 
arrays are concerned. 
 
  As a consequence of these findings a simple model to compute the axial pressure in the array was 
developed, assuming a well collimated circular sound beam.  One simply had to integrate the axial 
field of a continuous distribution of spherical pistons, accounting for amplitude reduction due to 
absorption. 

Figure 9: Axial SPL versus range for the two high 
frequencies and the difference frequency. Figure 10: Beam patterns 



12 

 
Figure 11 is a plot of the simulation of the axial field of the array compared with experiment 
(dashed). The correspondence is not perfect but rather assuring.  Note the tiny details at the start of 
both curves.  They were not seen in the initial experiment, but appeared when the diameter of the 
needle hydrophone was reduced.  They are due to the nearfield of the difference frequency «virtual» 
sources, not the primary wave field.  If the radius of the simulated beam is reduced by 5% the 
curves fit even better. 

 
This computer code allowed a numerical study of the behaviour of the axial field while varying 
parameters like frequency, radius, absorption etc. The information thus collected aided in finding a 
parameter description of the properties of this type of array, which led the way to a general 
parameter description for parametric acoustic arrays in general: the “Vestrheim parameters” [21] - 
to be discussed below. 
  

Figure 12: Measured (dashed) and computed (line) axial 
pressure in a collimated array. y is distance divided by 
source radius

Figure 11: Directivity of 3 MHz difference frequency, collimated plane waves.
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In his master project Magne 
Vestrheim continued experiment-
ing on the collimated  plane wave 
array, and succeeded to calibrate 
the amplitudes, as well as 
performing a detailed study of the 
directivity as a function of 
distance. The numerical code was, 
however, not extended to cover 
directivity. 
 
Figure 12 shows an example to 
illustrate the misconception that 
the parametric acoustic array is 
devoid of side lobes.  This 
example shows that this is not 
always the case, but admittedly 
sidelobes are rare, and occur only 
for Type I arrays. 
 
Figure 13 illustrates what was later 
known as the «Bergen effect». It 
was a puzzling fact that the 
directivity seemed to depend on 
the distance from the primary 
source.  In this plot Vestrheim 
showed why:  since the interaction 
takes place in an extended volume 
the natural origin to use for the 
directivity lies in front of the 
primary source.  Very close to the 
source no origin is established – it 
seem to move slowly outwards 
with range of observation, but 
some distance outside the 
interaction region it seems to 
become fixed.  When this was 
realized it was not difficult to 

extend the measured beamwidth to the one expected in the very far field, which was necessary to 
compare with theoretical models only valid in the far field.  A similar effect is observed for Type III 
arrays, as noted by Muir and Willette [22] in 1972, but then the directivity increases with distance, 
and no minimum in half pressure angle occurs. 
 
The Bergen effect also throws some light on the peculiar result of Bellin and Beyer, in that the 
beamwidth of the parametric array was wider than if the sound was radiated from the primary piston 
directly.  This could be explained if the beamwidth was measured rather close to the primary source, 
see Figure 13. 
 
ISNA in Birmingham 
The next international symposium on nonlinear acoustics took place in Europe, arranged by 

 

Figure 13: Variation of half pressure angle with range in a 
parametric array - the "Bergen effect". 
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Berktay's group in Birmingham, UK, in 1971.  For us this was a big event, allowing us to  meet for 
the first time many of  the great names in the field.  Truly, previous occasional visits had found 
place – in 1968 R. Mellen, at US Navy, honoured us with a surprise visit by suddenly turning up at 
the laboratory. He probably wanted to meet the Tjøttas, who were away at the time,  and had to be 
content with me.  Around 1970 Blackstock and Muir had a  tour to Europe, including Bergen.  It 
was really exciting to have them in our laboratory with us. In Birmingham were both Beyer and 
Westervelt, and also Leif Bjørnø made his entrance in the field for the first time. To mention just a 
few. We had hoped that representatives from the Soviet groups would be there too, but the political 
situation put a stop to that, unfortunately. For the first time an application of the parametric array 
was presented: G.M. Walsh at Raytheon demonstrated sub-bottom profiling with a 200 kHz array 
producing 3.5 to 12 kHz at beamwidths 2-5 degrees, and high resolution depth sounding down to 
2000 fathoms. I do not know if this was ever commercialized. In Birmingham altogether 14 
presentations were given, 8 of which on the parametric array. 
 
Vestrheim and myself presented the results just shown, which were well received. Unfortunately the 
proceedings, which appeared a year later was in the lousiest technical condition.  We were promised 
a rectifying new version, but this was never produced, and the consequence is that the material 
presented at that symposium remain a secret for those not present.  We reprinted our work as local 
reports some years later, but also those were distributed rather sparsely [23,24]. 
  
The Vestrheim parameters 
The Vestrheim parameters appeared as a result of an attempt to categorize the properties of 
parametric arrays in a simple way, and was presented at ISNA in Copenhagen in 1973 [21].  
Basically there are two parameters, but it is also convenient to use two derived ones. The basic 
parameters are defined as follows: 
 

  
N f =

f −¿

f 1 (frequency number, “downshift ratio”)  
with f_=difference frequency and f1 the highest primary frequency. 

  N F= �k1 LA

k1 a
= �LA

2R1
 (“field number”). 

 
The field number is a measure of the array length,  LA, relative to the primary beam Rayleigh 
length, R1=½k1a2, k1 is the wave number of the highest primary frequency and a is source radius,. 
 
Any array specified by frequencies, primary source radius, sound velocity and medium absorption 
coefficient will be designed definite Nf, NF values accordingly, and thus represent a point in the Nf- 
NF plane, often referred to as the Vestrheim parameter diagram. 
The derived parameters are: 
  N D= �N f N F  (“divergence number”), and  
 
  N A= �N f / N F (“aperture number”). 
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Of the derived parameters ND gives a measure of the maximum destructive phase shift within the 
array due to curved wavefronts.  NA may be interpreted as a measure of the ratio of difference 
frequency nearfield length to the array length.  In the parameter diagram curves with constant NA or 
ND may be drawn, dividing the diagram in regions. An example is shown with NA=1 and ND=1 in 
Figure 14. 
 
In this diagram also some experimental arrays reported in the literature are included. 
The collimated plane wave array of Type I is found in the left region.  Arrays with interaction in the 
farfield of the primaries, Type III, is located in the right region.  The central region corresponds 
roughly  with Type II, the Westervelt model, e.g. pencil beam type.  Since this diagram was 
presented by Vestrheim  in 1973 many more realizations of parametric arrays have  been made, 
mostly in region III. 
 
 
Next experiment in Bergen 
     In 1974 a new project started in Bergen in cooperation with Simrad and Jens Hovem at 
Norwegian Technical University in Trondheim. This led to the construction of an array which is the 
mother of the TOPAS [25] array, commercialized many years later. Another outcome was a 
laboratory experiment on Type III arrays. Here measurements out to almost 4 array lengths were 
obtained, which was much further out than previous experiments on this type of arrays. Directivity 
and amplitude as a function of range was studied. The results are too detailed to be discussed here. 
However, one important conclusion need to be presented. 
 
Figure 15 shows measured beamwidths (half power angles) as a function of the parameter ND.  
Westervelt’s model is used for normalization, and is represented by the horizontal line marked W, 
and is not dependent on the divergence number.  Measured data is collected from a lot of sources, 
including our own measurements (circles). For ND>1 the beamwidth becomes wider than 
Westervelt's, but we see that it can be more narrow for ND<1.  The line marked B corresponds to the 
product of the primary beam directivities.  Several analytical models had this as a limit if ND 
becomes large.  We see no experimental evidence of this. Instead the measurements seem to follow 
line A, which is the directivity of the primary beam (the highest frequency).  This is an important 
result, making it relatively simple to predict the directivity of the array!  
 

Figure 14: The Vestrheim parameter diagram with some 
experimental arrays plotted in. From [20]. 
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At this time a number of approximate models attempting to describe the parametric array had been 
suggested, with varying degree of success.  I cannot go into detail about these here. The most 
widely used was the Mellen-Moffett [26] model. Unfortunately the derivation of the model 
contained several short-cuts which made it extremely difficult to access the limits of validity of the 
model. The real improvement came with the KZK-equation, which is a parabolic approximation of 
the wave equation including nonlinearity and absorption, derived some 10 years earlier in USSR by 
E.A. Zabolotskaya and R.V. Khokhlov [27], and later extended by Kuznetsov [28]. S. Tjøtta and I 
used it in 1978 [29] to simulate the «Bergen effect» in Type I arrays. 
 
Personally this was my last effort in investigating parametric acoustic arrays.  Later it we have used 
it as a laboratory tool in an experiment on reflection/transmission of near critical incidence sound 
beams at interfaces between two fluids. But in Bergen theoretical  modeling continued.  Jacqueline 
Tjøtta returned to acoustics in the late 1970ies working on the KZK-equation, and during a 
sabbatical stay at ARL the Tjøttas became engaged in numerical calculations on a specific array 
designed by Tom Muir. This work subsequently led to the the development of a very general 
computer code, later termed “The Bergen Code” [30], which applies to a  number of propagation 
problems in nonlinear acoustics, including the parametric acoustic array. Although more recent 
variations have been developed it is still in use today. 
 
Epilogue 
The parametric acoustic array has entered a niche where the need for its special properties 
compensate for the relatively low amplitude. I tried to sell the concept to researchers in fisheries 
early in the 1970ies, but without much success.  Only recently has a genuine interest for the use of 
parametric arrays in that area been aroused. The applications found today are mainly where narrow, 
low frequency sound beams are needed, such as in sub-bottom profilers, or where sound-sources 
with almost frequency independent directivity is needed, since this is governed by the primary 

Figure 15: Normalized half power angles versus ND. 
Symbols - Various experimental data. Curve A - primary 
directivity, Curve B - source density directivity, Curve W - 
Westervelt directivity. 
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directivity.  As such it is also a very versatile laboratory tool. 
 
In the period 1980-88 Jacqueline and Sigve Tjøtta published 27 papers, where more than half were 
on nonlinear acoustics. In Bergen a large number of master and PhD students had nonlinear 
acoustics as a topic for their thesis work, and it is not too strong to say that all of these, as well as 
the subsequent activity at University of Bergen in linear acoustics, originated with the parametric 
acoustical array. 
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Abstract 
Echo sounders are commonly used for abundance estimation of fish and plankton, 
supported by biological sampling. The most common operating frequency in traditional 
single-frequency fish abundance estimates is 38 kHz, but increasingly used multi-
frequency methods for identifying and quantifying zooplankton and certain species of 
fish typically operate in the range 10 kHz–500 kHz. The acoustic methods rely on 
calibrations using backscattering targets at relatively short distances from the echo 
sounder transducers. The linear wave equation is generally applied to compensate for the 
transmission loss for scatterers at other distances than the calibration distance. Nonlinear 
sound propagation effects have however been found to introduce significant errors in 
backscatter measurements in the upper part of the frequency range used in multi-
frequency methods, using standard echo sounder drive levels. In the present work 
nonlinear sound propagation effects for common scientific echo sounders operating at 
120 kHz and 200 kHz are investigated experimentally and theoretically. Such effects are 
shown to occur at both frequencies when high power settings are used. Nonlinear sound 
propagation effects are a feature of sound propagation through water and therefore occur 
independently of what acoustic equipment is used. Recommendations for reduced drive 
levels in order to reduce nonlinear errors are discussed. Moreover, a method based on 
numerical simulations is proposed for compensating for errors in biomass estimation, 
including consideration of possible nonlinear effects in on-ship echo sounder calibration. 
The proposed method may have potential for use on historical time series data as well as 
for new acoustic surveys. 
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Introduction

I Piezoelectric array (Pz27) to
be used in time-reversal
applications

I Transducer has been cut
(from one piece) so that the
elements are connected by a
4mm thick mid-plane

I Excitation of one element
will result in coupling effects

I So, how will these coupling
effects influence the
directivity?

I Element-dimensions: A ≈ 1cm2,
T=2cm.

I Resonance frequency: 73-76kHz,
(before cutting: 100kHz)
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I Coupling measurements in water surroundings
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I Conclusion



First: Some pictures

Wires connected to each element
pre to applying voltage Making the array waterproof



Pictures

Transducer-construction
I Bracket containing

coaxial cables, one for
each element.

I Brass foil on top of
array, gathering
ground signals.



Coupling measurements in air surroundings

Methods:

1 Excitation of one element by
applying a burst of its resonance
frequency, with voltage, 2V
peak-to-peak.

2 Measuring the response occurring
from the 24 other elements.

3 Mapping the results.



Coupling measurements in air surroundings
Results:

Left matrix shows results regarding an excitation of the center element. Right
matrix shows same measurements regarding element number 8. These
measurements shows larger responses in lateral directions relative to the
operating element. The largest response occur from the edge-elements (due to
their frequency response?).



Coupling measurements in air surroundings
More results:



Coupling measurements in water surroundings

Why water?
I Because the directivity was chosen to be measured in water due

to satisfying sound transmission.
I Therefore, by first measuring the coupling in water, we may

perhaps obtain an indication of expected disturbance in the
pressure field.

Methods:

I Array is now placed 30 cm below watersurface in a barrel.
I Same procedures as in air measurements.



Coupling measurements in water surroundings
Results:

I Less response compared to air measurements.

I Infact, if Ū = average respons, then Ūwater . 1
2 Uair

Reason:
I Larger impedance in water (opposed to air) is causing more acoustic energy to

be transmitted off the array.

I Water puts pressure-load on elements, resulting in less vibration.



Directivity

Methods:

Directivity is measured while excitating one element only.



Directivity

Theory 1,2 : one element, one dimension

I The source-distribution of a square transduser-element,
with surface side-lengths, Lx, is given by

I T1(x) = rect(Lx)
I The directivity-function, f (u), is obtained by applying the convolution-theorem

on T:

I f1(u) = sinc(πuLx), u =
sin θ
λ



Directivity

Theory 1,2 : array, one dimension

I The source-distribution of multiple square array-elements,
each with surface side-lengths, Lx,
and mutual center-distance, dx,

I is given by T5(x) = [comb(dx) ∗ rect(Lx)]rect(Rx)

where Rx is the total side-length of the array.
————————————————————

I By using the convolution-theorem, we get the directivity-function:

I f5(u) = [sinc(πuLx) · comb(1/dx)] ∗ sinc(πuRx)

I PS: All elements are emitting same phase and amplitude!



Directivity

Results:
As expected, the measured
field does seem to have
smaller beamwidth than the
calculated field, most likely
due to the coupling effects.
This will limit the
possibilities regarding phase
shifting.

Disturbance in measured field
is assumed related to
airbubbles occurring on
hydrophone, and aberration
from symmetry in boundary
conditions.
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f = f (θ), θ = θ(u) = sin−1(u · λ)



Conclusion

I Coupling effects are smaller in water compared to air
(by factor . 0.5).

I and does seem to have an impact on the beam width in
water-environment.



Future tasks

I Applying the external, modified electronics system, and try to
make array usable for time reversal applications.

I Test the array on an oil/gas separator.
I Try to reduce the coupling effects by modifying the array

construction.
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ABSTRACT 
Sonic crystals are media with a periodic modulation of the acoustic parameters, as the 
density and the bulk modulus. They have recently attracted a great interest, because of 
their potential applications in the control of sound propagation, used as reflectors, 
focusers or waveguides. All these properties are related with the dispersion introduced 
by the crystal anisotropy. We report on the propagation two phenomena related with the 
spatial dispersion properties of the crystal: we show experimentally the nondiffractive 
propagation of sound in three-dimensional sonic crystals (inside the crystal) and we 
analytically evaluate, numerically (FDTD) calculate, and experimentally measure the 
focusing properties of the propagated sound beam behind two-dimensional sonic 
crystals. Support from Spanish MEC, project FIS2008-06024-C03 and C02 and from 
Universitat Politècnica de València through Project 20080025, are acknowledged. 
 
 
PROPAGATION INSIDE THE CRYSTAL:  SELFCOLLIMATION IN 3D. 
Wave beams diverge when they propagate in homogeneous materials due to diffraction. 
Nevertheless, a particular regime where diffraction spreading vanishes, the so-called 
self-collimation, was predicted a decade ago for electromagnetic waves propagating in 
optically periodic materials (photonic crystals) [1]. Inside a photonic crystal the 
dispersion relations for propagation (Bloch) modes are modified, and the envelopes of 
electromagnetic waves can propagate without diffraction broadening [2]. The vanishing 
of diffraction in the wave propagation along periodic crystals has been so far 
experimentally demonstrated for electromagnetic waves in optical [1] and microwave 
[3] frequencies, and recently, for the ultrasonic beam propagation inside a sonic crystal 
[4]. Most of the beam propagation effects, in particular the self-collimation effect, have 
been addressed mainly in two-dimensional (2D) systems. The three-dimensional (3D) 
systems are more complicated not only for the experimental study but also in the 
numerical level, where the FDTD calculations are extremely time consuming. From the 
experimental point of view, the 3D self-collimation has been observed only for 
microwaves [3] but never for the optical frequencies neither other than electromagnetic 
waves, i.e. the matter waves, or the sound waves. We demonstrate the 3D self-
collimation effect in acoustics, i.e. the nondifractive propagation of an ultrasonic beam 
through a 3D sonic crystal.  
The sonic crystal used in the experiment can be considered as formed by two squared 
2D structures like that studied in [4,5], rotated by 90 degrees and interlaced one into 
another (Figure 1). Each of them are formed by 20x20 steel cylinders with a radius r = 
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0.8 mm. The lattice constant is ax = ay = a = 5.25 mm where ax, ay are the spatial periods 
along x and y direction respectively. The beam is propagated along the z direction 
inside the crystal. 
 
 

 
 

Figure 1- Unit cell scheme (left) and photograph (right) of the crystal used in the experimental setup. 
 

Figure 2 shows the effect of the crystal on the propagation of the beam. Fig. 2(a) shows 
the sound intensity distributions in the transversal planes just after transducer, i.e. at a 
distance of 3 mm from the transducer plane. Fig. 2(b) shows the distributions in a free 
(without crystal) propagation over the distance of 115 mm, respectively. The propagated 
beam is slightly anisotropic, i.e. is slightly broader in the horizontal direction because 
the adapting layer of the emitting transducer has a certain curvature (astigmatism) in 
that plane, acting as a cylindrical diverging lens. Fig. 2(c) shows the amplitude profile 
of the sound beam at the rear face of the crystal, measured at the same 115 mm distance 
as in Fig. 2(b). The diameter of the central part of the beam remains nearly of the same 
order than the input (just slightly broadened), clearly indicating the effect of self-
collimation. Besides the central self-collimated beam, the side-lobes appear which 
correspond to the diverging wave vectors. The side-lobes are related with the excitation 
of the additional Bloch modes (in addition to the basic subdifractive one), and require a 
separate study. We note that these side-lobes disappear after the larger distances behind 
the sonic crystal (not shown).  
 
 
 
 
 
 
 
 
 
 
 
Figure 2.- Transverse profile of the ultrasonic beam measured at (a) 3 mm from the trasducer, (b) at 115 

mm from the trasducer in free propagation and (c) at the crystal output located at 115 mm from the 
trasducer, after propagating through the crystal. 
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PROPAGATION BEHIND THE SONIC CRYSTAL: FOCUSING AND 
FILTERING OF THE BEAM.  
 

The modification of the spatial dispersion can also lead to the super-refraction, and to 
the lensing and super-lensing (subwavelength focusing), of light [6] and sound [7].  

The effects of lensing and super-lensing are, however, often treated inconsistently, in 
optics, as well as in acoustics. Usually the band structure and spatial dispersion curves 
(isolines of frequency) are first calculated, basing on the Bloch-wave theory. Then, 
depending on the slopes of the spatial dispersion curves the effective refraction index is 
calculated. Based on the calculated effective refraction index the geometric ray 
approach is applied, and the images of point sources are obtained. 
Some clarity must be brought into the problem of the lensing effects in PC or SC 
materials. This work aims to clarify the questions related with the focusing of sound 
beams behind the sonic crystal. Considering the spectral width of the beam and the 
dispersion curves of the crystal we distinguish three different propagative regimes 
(Fig.3). In particular we calculate the focal distances, the beam width and the quality of 
the beam at the waist (in the focal spot). These evaluations are checked by the FDTD 
calculations, as well as by experimental measurements.  

 
Fig. 3- The width of the spatial spectra of the beams are shown corresponding to the different considered 

regimes: a) broad beams with spatial spectra inside the “parabolic” area, b) intermediate width, with 
spatial spectra filling the full isoline of the given band; c) narrow beams with the spatial spectra 

extending over isolines from the neighboring bands. Finally, the region denoted by d) corresponds to 
forbidden angles (band gaps in space spectra domain).Continuous lines correspond to a fixed value 

frequency contour in different bands.  
 

Region a).  Broad Gaussian beam. No distortion. The width of the beam at the focal 
point is always the same as the width of the initial beam. 
 
Region b). Beams of intermediate width. The off axis components acquire a 
nonparabolic phase shift, so the beam is focused at the same distance as follows from 
model a, however the width at the waist is not the same as at the incident in the SC. 
 
Region c). Not only the phase of the beam (in the spatial spectrum domain) is distorted, 
but also its amplitude. The spatial spectrum components are removed (filtered out) at 
some values, corresponding to the angular band-gap (region d in Fig. 1(b)). This results 
to the complicated waist around the focal point.  
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These three propagation regimes are shown in figure 4 both from the result of numerical 
simulations and experimental measurements (D is the diameter of the ultrasonic source) 
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Fig.4a- Experimental measurements  
for frequencies: 

255 KHz (a), 240 KHz (b) and 225 KHz (c). 
D~5 a 

Fig.4b-Numerical simulations at. 240 KHz  
for different source sizes:  

D = 8a (a) , D = 4a (b), D = 2a (c) . 



Finite Element Studies of Permittivity Constants in Piezoceramic
Disks
Magne Aanes and Magne Vestrheim
Acoustic group, Department of Physics and Technology, University of Bergen

SUMMARY

Permittivity constants are important for describing electrical and electroacoustical properties of piezo-
ceramic disks. The following permittiviy constants are used in describing piezoceramic disks at high
Diameter to Thickness (D/T) - ratios [1] when the material is poled in the thickness direction: the
permittivity constant at constant stress, εT33, the planar permittivity constant, εP33, and the permittivity
constant at constant strain εS33. For piezoelectric materials such as lead zirconium titanate ceramics these
permittivity constants are connected by the planar and the thickness extensional coupling factors, kp
and kt [1]:

εP33 = εT33(1− k2
p),

εS33 = εT33(1− k2
p)(1− k2

t ).

Simplified one-dimensional (1D) models for radial modes [1] [2] and thickness extensional modes [1]
have been used to describe electrical properties (Z,Y). These models are expressed with the permittivity
constants mentioned, in addition to elastic and piezoelectric constants for the material. Z is the electrical
input impedance, Z = R+iX, and Y the admittance, Y = G+iB. Some limiting values for these models
can be found: For the radial modes model:

when f → 0, Y = iωCT0 = iω
πa2ε̂T33
T , and when f →∞, Y = iωCP0 = iω

πa2 ε̂P33
T .

For the thickness extensional modes model:
when f → 0, Y = iωCP0 = iω

πa2ε̂P33
T , and when f →∞, Y = iωCS0 = iω

πa2ε̂S33
T ,

where complex material constants, denoted byˆ , have been used to represent also effects of dielectric,
elastic and piezoelectric material losses [3] [4]. T is the thickness of the disk and a is the radius. CT0 , CP0
and CS0 are defined from the above expressions. I.e. for the permittivity constants the following notation
is used [3] [4] ε̂ = ε′ − iε′′ = ε(1− i/Qε) = ε(1− i tan δ).

In the present work the electrical properties of piezoelectric disks are studied including the behaviour
towards the limiting values mentioned above, by using finite element (FE) simulations and measurements.
The FE modelling program FEMP U3.2 [5] is used for the simulations. In order to facilitate such
comparisons with the limiting values, the electrical conductance, G, and susceptance, B, are reformulated
through a so-called ”generalized” permittivity constant and associated Q-value by:

εGEN = B
T

πa2iω
,

QεGEN =
B

G
.

In the FE simulations adjusted material data [6] [7] [8] for Pz27 [9] disks are used in order to obtain a
closer agreement with measurements.

In the results a frequency × thickness (fT) versus D/T type of eigen frequency spectrum is calculated
for Pz27 disks for a fT range from 0 to 3000 [kHz mm] and a D/T range from 0 to 35. This represents
extended ranges compared to similar plots for other materials presented elsewhere, e.g [5] [7], where a fT
range of 0 to 2200 [kHz mm] and a D/T range of 0 to 25 were used. For the spesific results and further
discussions it is referred to [10].

Results for εGEN and QεGEN as a function of frequency are presented for Pz27 disks of D/T ≈ 10 and
25 with comparisons between the theoretical models and measurements. For low frequencies (f → 0) a
good agreement with the limiting values can be found for both D/T - ratios. FE simulations in the range
between the first radial mode and the edge mode demonstrate a variation of εGEN around the εP33 value,

1



and where the average of the peak and lowest value for each resonance can get within a few per cent of
the εP33 value. Similar behaviour is not shown for QεGEN and the Qε

P

33 . These behaviours are interesting
to investigate further. For much higher frequencies than the first thickness extensional mode, both the
FE simulations and measurements are too limited to reach the limiting values of εS33 and Qε

S

33 . However,
the tendency of the results covering up to above the third thickness extensional mode is in agreement
with that of the 1D model for thickness modes. Thus to get within a few per cent of the limiting values
will require results over an extended frequency range. The specific results and further discussions will
become available in [10].
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Incident wave

We assume a directive sound beam in the far-field:

pinc = p0
r0

R
D(θ)ei(kR−ωt)f (R − ct)

where p0 is pressure at reference range r0, R is range, D(θ) is
directivity function, f (R − ct) is envelope of the pulse, k is wave
number, ω angular frequency and t is time.
It is also useful to substitute ei(kR−ωt)f (R − ct) with a measured
burst when comparing to experimental results.



Reflected field

Helmholtz-Kirchhoff:

p(r) =

∫
S
(G(r, r′)∇0p(r′)− p(r′)∇′G(r, r′)) · dS

where G(r, r′) is the Greens function, and r′ refers to the
surface S, assumed to consist of a plane and a hemisphere (at
infinity).
Assuming G(r, r′) = 0 on the plane (Dirichlet condition) the
integral reduces to

pr = −
∫

S
p(r′)∇′G(r, r′) · dS



Greens function

I A suitable Greens function is

G(r, r′) =
eikR1

4πR1
− eikR2

4πR2
,

where R1 = |r− r′| and R2 = |r− r′′|. This is found by the
“mirror” method: r′ = σ(x ′, y ′) + z ′ẑ, and
r′′ = σ(x ′, y ′)− z ′ẑ. ẑ is unit vector normal to the plane,
while σ(x’,y’) lies in the plane of the reflector.

I In the plane z ′ = 0, and we get R1 = R2, so that G = 0.
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∇′G

The gradient of the Greens function is straight forward (omitting
details): On the plane R1 = R2 = R =

√
z2 + σ2, and

∇′G · d(S)|S =
2z
R

∂

∂R
(

eikR

4πR
)dS

where we have taken into account that dS is directed opposite
∇′G.
Thus,

p(r) = − z
2π

∫
S

p(r′)
∂

∂R
(
eikR

R
)dS.

z is height above the plane. In the integral the pressure is
supposed to be that at the plane.



Vertical sound beam

Locating the source above the origin at height h, e.g.
r = r(0,h), R =

√
h2 + σ2, and substituting for ∇′G, and

dS = 2πRdR we find

p(h, t) = −h
∫ ∞

h
p(r′, t)

ikR − 1
R2 eikRdR

So far no approximations have been introduced, except the
assumption of monochromatic wave and semi infinite half
space. (Lower limit is h because then σ = 0).
We want to apply this to a burst from a vertical sound beam.



Kirchhoff approximation

First question: What to put for p in the integral?

I Kirchhoff approximation: use free field value!
I This is not obvious. In the case of plane waves the

matching conditions used at the interface is continuity of
pressure and normal velocity across the interface. Then
the pressure at the interface is p = pinc(1 + C), where C
is the reflection coefficient.

I But this does not work! Here is why:
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Elementary case

Assume the source to be omnidirectional, reflection coefficient
constant, continuous waves, infinite size of interface. Direct
integration gives:

I p(h) = p0r0R
2h e2ikh

I This can alternatively be found using the mirror method!
I Clearly R must be the reflection coefficient C, not 1 + C!
I Further, to agree with plane wave incidence, letting

h→∞, it seems natural that C should be reflection
coefficient at normal incidence. ???!
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Vertical sound beam - 2

Putting p = pinc , as given above, in the integral, and substitute
dS = 2πRdR, we find

I p(h, t) = −hp0r0
∫∞

h R(R)D(R){ik − 1/R}e2ikR

R2 f (R − ct)dR

I Alternatively, express time in terms of R, e.g. compute
p(R) as the sound propagates:

I p(h,R) = −hp0r0
∫ R

h R(R)D(R)f (R){ik − 1/R}e2ikR

R2 dR
I Here we have kept the possibility that R depends on the

incidence angle
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Burst

Even if a monoharmonic wave was assumed, a reasonable
approximation is to modulate the amplitude with a shape
function f (r − ct). Note that in terms of R this function, if
expressed in time domain, must be reversed!

I In our first attemt to compute the reflected pressure the
kernel in the integral:

K = R(R)D(R){ik − 1/R}e2ikR

R2

was computed once and for all, and integrated over the
burst duration while letting f (R) slide along the kernel

I This turned out wrong, because then the phase moved
through the burst
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Burst - 2

Better results were obtained by putting the kernel

K = R(R)D(R){ik − 1/R}eikR

R2 ,

and combining eikRf (R) to form the sliding burst
I In the following we shall show simulations made with a

rectangular burst shape and a smoothed one, with
exponential rise and decay.

I The amplitude is normalized with respect to the elementary
example presented above, assuming total reflection



Burst - 2

Better results were obtained by putting the kernel

K = R(R)D(R){ik − 1/R}eikR

R2 ,

and combining eikRf (R) to form the sliding burst
I In the following we shall show simulations made with a

rectangular burst shape and a smoothed one, with
exponential rise and decay.

I The amplitude is normalized with respect to the elementary
example presented above, assuming total reflection



Simulations

I The rise time was selected in terms of a Q-factor. In the
example the rectangular burst has 10 cycles of 5 MHz, the
Q-factor is 5, and the number of samples per wavelength is
20 in the integration.The total length of the smoothed burst
corresponds to 18 periods

I The half power beamwidth is 7o

I The distance to the copper reflector is 15 cm, and the
plane wave reflection coefficient for oblique incidence was
used

I If the source is to act as a receiver, its directivity function
on reception must also be accounted for. Thus, in the
integral D2 is used instead of D
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Simulation results
Burst shapes: note time reversed, time axis is actually range
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Comments

Are the results reasonable?

I No!
I Amplitude is wrong: Should be less than 1 after

normalization. Does not vary with burst length, integration
stepsize, and only little with directivity, but ...

I Amplitude increases with height h!! - no explanation found
so far.

I Also alarming: Omnidirectional burst -> long lasting
reflection:
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Reflection coefficient

The last plot was with C = 1. Plane wave, oblique incidence
makes very little difference (C⊥ = 0.931, θc = 17.4o).

I Plane wave oblique reflection coefficient is valid in direction
θr , not in arbitrary directions.

I What about Lamberts cosine law (intensity)?
I No visible effect in our case
I Temporary conclusion: Directivity limits the duration of the

reflected signal
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Experiment - technical details

I Sound source: Circular, Resonance frequency 5.0 MHz,
diameter 2.4 mm, half power angle 7.3o

I Reflector: polished (to optical quality) Cu disk of thickness
5 cm, diameter 20 cm

I Reflections recorded through high pass filter (2 MHz cut
off) on a LeCroy 9350 oscilloscope

I The distance to the copper reflector is 13.24 cm, sound
axis not excactly in the center of the reflector

I Sound burst recorded separately at 14 cm distance with a
Precision Acoustics needle hydrophone of diameter 0.2
mm
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Discussion

I The measured signal has passed once more throught the
transducer, while the simulated signal is calculated at the
front of the transducer

I Thus, we need to know the impulse response of the
transducer to make a fair comparison

I In this example the reflection coefficent does not have a
major influence, but the problem of what to use for the
reflection coefficient remains, and any suggestion will be
well received!

I The amplitude varies with height after normalization: This
indicates something is wrong in the model!!

I No conclusions so far - further work needed.

Thank you for your attention!, but there is more ..
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Comments on comparison with Noela’s
experiment

Pulse shape guessed, not exact

The log plot show interesting dips. Noela’s range starts 7 m
before the bottom: to compare subtract 8 m from her scale!
Thus, the big dip at 31 m matches roughly her dip at 44!
No parameter adjustments tried so far
Scaled experiments on sand bottom will be made soon
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Concluding remarks

This investigation has only just started. Several questions
arose while putting up the simulation code, which still remain to
be answered. Most important: realistic reflection coefficient!
Also imperative to solve: Why does not the normalizing of the
amplitude work?
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1 Introduction 
Methane hydrates are ice-like crystals [1] that impose a threat to oil and gas transport 
pipelines as they can accumulate and clog the pipes. Methane hydrates form under 
unfavorable process conditions like low seabed temperature and high fluid pressure. 
Such process conditions are encountered more and more often as subsea processing 
and transportation of multiphase fluids over long distances is becoming a viable 
solution for several oil and gas fields. Solutions for monitoring hydrate formation are 
highly called for. 
 
Guided waves in pipes and plates are popular in non-destructive testing (NDT) due to 
their low attenuation and full coverage potentials [2-10]. Different modes have 
different properties that can be exploited in the search for a specific fault. Examples 
of such are the dispersive nature of some modes that are being used to measure 
thickness changes by sound velocity (for example due to corrosion) [3], and mode 
conversion, which can indicate fault in welds based on non-symmetric reflection 
[4,5]. 
 
The aim in this work is to study modes and methods to investigate the potentials for 
detecting wall deposition and growth of methane hydrates in wet gas transport 
pipelines using guided ultrasonic waves. There has been a resent growing interest in 
using guided waves for deposit detection and characterization. The studies have been 
reported with basis in deposition problems from many industries like oil, food and 
chemical, see e.g. [11-15]. The problem of detecting a deposit is related to typical 
problems in non-destructive testing, but here the aim is to detect the effect of a load 
on the waveguide and not a change in the waveguide itself. Like in NDT, there are 
different cases which can have different optimal solutions. A focus on “non-leaky 
modes” has been chosen for this study since these provide a means to detect wall 
deposits independently of flow.  
 
The deposit is here assumed to build up gradually on the wall. Transmission 
measurements, like sound velocity and attenuation are therefore most likely to give 
best results (as opposed to detecting reflections). Mode conversion is another 
measurand that may add information about the deposit distribution.  

2 Theory 
Guided wave modes are infinite in numbers and generally dispersive. For a thorough 
introduction to the phenomena see e.g. the book by Joseph L. Rose [6]. To aid the 
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understanding of guided wave propagation and as a tool for studying the effect of 
added layers, a model for calculating the sound velocity and attenuation as function of 
frequency has been used. This model is an own implementation of the model 
DISPERSE as described in [7-9]. 
 
The model is based on the global matrix method [16], describing the layers as infinite 
plane parallel (for plates). Starting with a semi-infinite layer, which can be vacuum, 
liquid or solid, a number of finite layers (both fluid and solid) can be added. The final 
layer is another semi-infinite layer which again can be vacuum, fluid or solid. Wave 
attenuation is handled by complex wavenumbers and absorbing materials are included 
in the model by complex compressional and shear velocities as material property 
entries.  
 
A similar model has been implemented for a cylindrically layered system (pipe 
model). Here the first layer is the cylinder core of infinite length (vacuum, liquid or 
solid), while the infinite layers now are annular in the cross section. The final semi-
infinite layer surrounds in this case the infinitely long pipe or bar [8]. 
 
Both wavenumber dispersion curves (complex) and modeshapes (showing through 
thickness displacement- and stress-components) are calculated in the program. A 
tracking algorithm, as suggested by Lowe [7] is applied to “connect the dots” between 
frequency steps for the different modes. This is especially useful for calculating group 
velocity (see e.g. Rose [6]) defined as cG=∂ω/∂ξ, where ω is the angular frequency 
and ξ the horizontal wavenumber. 
 

3 Simulations 

3.1 Platemodes as pipemode representatives 
The model described in the previous section has been used to calculate the dispersion 
curves of an aluminum plate, of thickness d, in vacuum as illustrated with black 
dotted lines in figure 1 (where the modes shown are the anti-symmetric, A0, A1, A2, 
and symmetric Lamb-modes, S0 and S1). The curves show the phase velocity as a 
function of frequency-thickness product, fd. Aluminum is here chosen for comparison 
with measurements in the experiment section below. 
 
In figure 1, the red curves (underneath the dotted black plate dispersion curves) show 
some of the propagating modes in an aluminum pipe with wall thickness 3 mm and 
inner diameter 10 cm. Note that additional propagating modes, like flexural and 
torsional modes that are left out from this figure.  
 
The simulations show how it is plausible to use plates as representatives for pipes as 
the comparison is very good except from at low frequencies. The onset of this 
deviation is determined by the pipes diameter to thickness ratio, D/T (here 100/3). 
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a) 

 

b)  

 
Figure 1 a) Dispersion curves for an aluminium plate (black dotted) compared with a 10 cm 
inner diameter, 3 mm thick aluminium pipe (red). b) Through thickness displacement 
components (mode shapes) of the plate with thickness, d. Dotted line: out-of-plane component. 
Solid line: in-plane comconent.  
 
This onset increases to higher frequencies for smaller D/T. It is however important to 
remember that the comparison is done with the additional assumption of symmetric 
excitation around the circumference of the pipe. Otherwise another group of modes, 
flexural modes would occur (not shown here). 

3.2 Non-leaky modes 
In figure 1b some sample mode shapes calculated by the plate model are shown. These 
show the in-plane and out-of-plane displacement components through the plate. The 
S1 mode is termed “non-leaky” at the fd shown here (3.6 MHz-mm) because the out 
of plane displacement component is zero at the boundaries. The wave will therefore 
not radiate acoustic energy into a fluid which does not support shear forces (ideal). 
This property is well recognized by system designers who whish to make 
measurements “independently” of flow, and can be found in the symmetric modes in a 
narrowband close to where the phase velocity of the mode matches the bulk 
compressional velocity as observed by Victorov in 1967 [17]. 
 
Shear horizontal (SH) modes [9] are another group of modes with the properties of 
being non-leaky. The displacement components of these modes are normal to the 
propagation direction, and only in-plane. Having only in-plane displacement 
components, the modes are non-leaky at all frequencies. The pipe analog to these 
plate modes are the torsional modes which have displacement components only in the 
angular direction.  The phase velocity dispersion curves of the first three SH modes 
are shown as solid lines in figure 2a.  

3.3 The effect of dispersion 
The group velocity can be thought of as the signal, or envelope velocity. The group 
velocities shown in figure 2b are calculated from the phase velocities shown in figure 
2a. Note that the group velocity in general is different from the phase velocity except 
from SH0 which is non-dispersive. Dispersion can also cause pulses to smear out and 
represent by that a challenge in velocity and attenuation measurements. 
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a) 

 

b)  

 
Figure 2 a) Phase and b) Group velocity dispersion curves for Lamb (dashed lines) and SH 
modes (solid lines) in an aluminium plate 
 
To study this effect in some more detail, a Hanning windowed ten period sine burst is 
propagated as a plane wave using the phase velocity found in the model. First the 
pulse is propagated with the central frequency of the signal, then the frequency 
content of the excitation signal is propagated with the frequency dependency 
calculated for the mode investigated (single mode propagated as a plane wave to 
isolate the effect of one dispersive mode).  
 
a) 

 

b)  

 
Figure 3 Dispersion demo a) SH1 at 2.1MHz-mm b) A0 at 1.35 MHz-mm. Plane wave propagation 
of a 10 period Hanning windowed sine burst (blue) propagated with: 
I. constant phase speed equal to speed at centre frequency (red). 
II. phase speed as calculated in figure 2a for the frequency components in the pulse (purple).  
 
The two examples given in figure 3 are a) the SH1 mode at 2.1 MHz-mm, and b) A0 at 
1.35 MHz-mm. The excitation signal is shown in blue in the figures. The phase and 
group velocities of these modes can be read from figure 2. The SH1 mode has a group 
velocity lower than the phase velocity along with a positive group velocity slope. The 
dispersive pulse (purple) smear out and arrive later than the constant speed, center 
frequency propagated (red) signal in figure 3a. 
 
In the second example (figure 3b), the A0 mode is propagated at the centre frequency 
where the group velocity is higher than the phase velocity and has a zero slope (local 
maximum). The dispersive pulse arrives first in this example and the pulse envelope is 
virtually unchanged. Note that although the envelope of the pulse is travelling faster, 
the zero crossings still travel with the speed of the phase velocity.  
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3.4 Attenuating deposit layer 
Adding a deposit layer of increasing thickness to the plate, it has been observed that 
the thinnest layers (below 0.1 mm here) only affect higher frequency ranges. 
Increasing the layer thickness will increasingly affect lower frequencies and add 
“layer-modes” to the dispersion curves. An example of dispersion curves (unloaded 
SH and bi-layer modes) for an aluminium plate with 0.5 and 1 mm thick viscoelastic 
Bitumen deposit layer on one side is shown with dotted gray lines in figure 4. 
 
a) 0.5 mm Bitumen deposit on one side 

 

b) 0.5 mm Bitumen deposit on one side 

 
c) 1 mm Bitumen deposit on one side 

 

d) 1 mm Bitumen deposit on one side 

Figure 4 Left column: Group velocity and Right column: Attenuation for guided wave modes in 
an aluminium plate covered with a Bitumen deposit layer on one side. The thickness of the 
deposit was 0.5 mm (top row) and 1 mm (bottom row). 
  
Figure 4a and 4c show the group velocity and figure 4b and 4d show the attenuation of 
the bi-layer modes. The thickness dependent second bi-layer mode, B1 is indicated by 
an arrow in the figures. The black solid lines are the group velocity curves of the 
unloaded SH modes from figure 2b. The viscoelastic Bitumen deposit is as described 
by Barhinger et. al. [10] with density, ρ = 1500 kg/m3, compressional velocity cL = 
1860 m/s, shear velocity cS = 750 m/s, compressional absorption αL/ω = 0.000023 s/m 
and shear absorption αS/ω = 0.00024 s/m.  

4 Two initial experiments 
Both dispersion and multimode propagation complicate signal interpretation of guided 
waves. A typical approach in NDT is to optimize a system for single mode excitation 
[4]. It is then preferable to operate on frequencies below the cutoff of higher order 
modes where few modes exist. Another approach is to deal with multiple modes for 
example by some kind of spectrogram analysis, see e.g. [15]. The goal then may be to 
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B1

SH0 

SH2SH1 

B1 
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get a broader picture of the different modes present to characterize the waveguide. In 
the first experiment shown here, the goal was to investigate which modes were 
transmitted in a simple transducer configuration. 
 
In the second experiment, spectral amplitude components were studied with different 
loads on the plate. Again, no attempt was made to work on a single mode, but a 
window was put on the time domain signal to avoid edge reflections.  

4.1 Experimental setup 
The experiment was conducted on a 6082 T6 Aluminum plate with dimensions LWD 
(length x width x depth) 1750 mm x 1000 mm x 3 mm, see figure 5a. The material 
data used in the modeling for the aluminum plate was: Density, ρ = 2700 kg/m3, 
compressional velocity, cL = 6320 and shear velocity, cS = 3130. The elements where 
shear polarized gold plated PZT27 rectangular plates LWD = 18 mm x 3 mm x 1 mm, 
optimal for exciting SH modes. Sending and receiving elements (one of each) were 
glued to the plate with Araldite 2020 and the separation between sender and receiver 
was 500 mm.  

4.2 Plate without deposit, spectrogram analysis 
The spectrogram shown in figure 5b was obtained experimentally by adding 190 
spectrograms with 10 period sine excitations from 110 kHz to 299 kHz in 1 kHz steps. 
Overlaid the experimentally obtained intensity plot are the calculated group velocity 
dispersion curves converted into travelling times. The colors on the modeled curves 
represent shear horizontal (black), asymmetric- (blue) and symmetric-lamb modes 
(red), respectively. Besides from the shear horizontal modes actually aimed for, there 
are observed traces of both symmetric and asymmetric lamb modes. In addition there 
are some late arrivals in the range 0.5 to 1 MHz-mm which are not accounted for by 
the “direct path” propagation curves. 
 
a) 

 

b)  

 
Figure 5 a) Experiment with shear polarized PZT elements to excite SH waves in an Aluminium 
plate. b) Spectrogram analysis (experimental data) and calculated group velocity dispersion 
curves converted to time of flight. Blue, red and black curves represent asymmetric-, symmetric- 
and SH-modes respectively.  

4.3 Plate with deposit, spectral amplitudes 
In figure 6a the signal picked up by the receiver with air loading is shown (in black 
and red). The excitation signal was a single sine period at 400 kHz. The red part is the 
segment used as input to the FFT shown as the air loading curve in figure 6b. 

z

x
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Similarly, the frequency responses with different loading layers are shown in figure 6b 
with colors and styles as indicated by the legend.  
 
 

  

 
Figure 6 a) Received signal from a 400 kHz sine period transmitted 50 cm along the 3 mm 
aluminium plate. b) Frequency domain representation of the red part of the signal in a) with 
different plate loadings (see legend) 
 
The different loads studied in this experiment were water and different layers of 
honey as indicated by the legend in figure 6. The honey was off the shelf Norwegian 
honey, “Ekte honning” from Honning centralen. An approximately 5 cm wide strip 
was laid in the propagation path between, and about 10 cm beyond, the transducer 
elements. The dashed lines in the legend of figure 6 indicate parts of honey removed 
transversally to the propagation direction, leaving 4 cm long lumps of honey and 
about 8 cm of open spaces between them.  

5 Discussion 
Methane hydrate formation in oil and gas transport pipelines can occur both in the 
flow and on pipe walls. In this work, the focus has been on hydrates forming and 
growing on the pipe wall. This is therefore seen a problem of detecting the loading 
effect on a wave travelling in the pipe wall. Transmission measurement quantities, 
like sound velocity and attenuation were considered here to be most promising 
measurands. Properties of mode propagation that affect the decision on mode 
selection and processing technique were studied in the paper. 
 
A model based on the global matrix method for calculating dispersion curves and 
mode shapes of multilayered plates and pipes has been implemented to study the 
effect of loading on guided wave modes. This model was used to check how plates 
could be used as representatives for pipes in the initial work since a plate was 
considered easier to do experiments on. The pipe modes were well described by the 

Air          Water 
Honey: 
3 mm 
0.5 mm 
1/3 of 0.5 mm and 2/3 of 0.1 mm  
1/3 of 0.5 mm and 2/3 cleaned plate  

b) 

a) Plate loading 
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plate modes except from at low frequencies. The onset of this deviation was not 
studied in detail in this work but it was observed that it was connected to the pipe 
diameter to thickness ratio. 
 
Since the problem is to detect the effect of a viscoelastic load on a fluid (wet gas) 
flowing pipe, non-leaky modes like torsional, or shear horizontal for plates are 
especially interesting. With these modes it is possible to discriminate between non-
viscous (flowing fluid) and other (actual) deposit layers.  
 
Phenomena like group velocity and signal smearing, which are related to mode 
dispersion where studied in a simplified single mode plane wave pulse propagation 
calculation. Phase velocity dispersion curves calculated in the above mentioned model 
was used as input to these calculations. Traditional techniques like zero crossing for 
sound velocity and peak detection for attenuation are both affected by these 
phenomena. Signal smearing can be minimized by operating at a zero slope (max 
peak) group velocity.  
 
As an alternative to single mode pulse detection, spectrogram analysis has been tested 
in an experiment. The experiment was here run to see which modes were present in a 
transducer setup using shear polarized PZT elements oriented to excite SH modes. It 
was demonstrated how the calculated group velocity describe the signal propagation 
in the plate. Besides the SH modes, traces of S0, S1 and A1 were observed in the 
transmitted signal. 
 
Deposit layers were investigated both with simulations and experimentally. The 
simulations indicated a potential use of sound velocity to measure the thickness of the 
deposit layer. The sound velocity thickness dependence was found at a frequency 
times thickness product where the group velocity had a maximum peak and the 
attenuation was at a minimum as indicated by arrows in figure 4. These features both 
spoke in favor of a method based on measuring thickness by the sound speed of these 
modes. A feasibility study on this possibility was done by Ma et. al. [15]. An analysis 
similar to the one in figure 5b (but with reassigned spectrogram for better resolution) 
was run to obtain a broad picture of the bi-layer modes. The modes calculated were 
successfully reproduced in the experiment and thickness could be quantified but only 
as long as the layer was covering the whole circumference of the pipe. The weakness 
is that the method relay on bi-layer modes where the deposit itself acts as a 
waveguide. Applied to a practical situation with inhomogeneities both in material 
properties and spread, it will probably not produce clean mode curves and thickness 
information may be hard to extract.   
 
In the second experiment, the focus was on spectral amplitude changes due to 
waveguide loading. Not seeking to sort out a single mode, the signal input to the 
Fourier transform was truncated just before first edge reflection including 
contributions from as many modes as possible in the limit of the size of the plate. In 
this initial experiment, indications were found on an increase in attenuation with 
increasing amounts of honey. This experiment was however not set up for systematic 
studies of the loading effect, but more as a first test on experimental setup and 
processing algorithms. Work is currently being done on methods to improve 
frequency and wavenumber bandwidth and signal to noise ratio of the measurements 
in order to do a more thorough attenuation study with deposits. 
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Introduction 
 
We have previously reported on work done within the SMiDA project that aims at making a probe 
designed for detection of vulnerable plaques in arteries (1). The probe will contain an acoustic CMUT 
array including electronics attached to it, as well as an optical part intended for spectroscopic 
investigations. The overall diameter is going to be about 1 mm. 
 
Here we extend this work to FEM modeling for an element that deviates from the initial symmetric 
design which was originally specified, but not achieved in practical production. We also have operated 
the CMUT in the collapsed state, and report some measured responses for this mode of operation. 
 
 
FEM modeling 
 
We have currently made a full finite element modeling based on the COMSOL software program (2) of 
the conventional mode. 
 
For reference, Fig. 1 shows a sketch of the geometry of the CMUT element.  
 
 

          
 
Fig. 1. a) Sketch of the CMUT element, b) perspective view of the membrane and metal electrode. 
 
 
By applying the previously reported laser probe (1) at an arbitrary location on the CMUT surface, we 
have measured a typical frequency response as shown in Fig. 2a. We see a fundamental resonance 
around 30 MHz, and two higher resonances around 60 MHz. Our previously reported model which was 
based on symmetry around one of the three tabs shown in Fig. 1b could not account for this double 
resonance.  
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Fig. 2. Laser probe measurements. a) Typical frequency response, b) observed reflection pattern of the CMUT. 
 
As is demonstrated in Fig. 2b, however, there is a noticeable asymmetry in the structure as shown by 
the distribution of the reflected light from the CMUT surface. We have built this feature into a new 
FEM model as indicated in Fig. 3b. In the modeled frequency response in Fig. 3a the measured split in 
the higher resonance is clearly demonstrated. The placement of each resonance is relatively well 
reproduced after adjusting slightly some of the geometric and material parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) b) 
 
Fig. 3. a) Simulated frequency response of vertical displacement at an arbitrary location on the CMUT as based on the 
asymmetric model shown in b). 
 
 
From the model simulations we also obtain the displacement distribution over the surface. This is 
shown for all three resonances together with measured data in Fig. 4. We conclude that the simulations 
reproduce all main features of the measured results. 
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                         a)                                                     b)                                                      c) 
 
Fig. 4. Amplitude distribution for the three resonances shown in Fig. 3.  a) Fundamental resonance, b) and c) the two higher 
order resonances (note that the two lobes in each distribution are in opposite phase). Upper row: Measured distribution. 
Lower row: Simulated distribution. 
 
 
 
Collapsed operation 
 
Referring to Fig. 1a, a simple model for the pressure p exerted on the CMUT surface obtains  (3) 

  2

0 cos
2

DC AC aV V t
p

d
   

 
 



AC DCV

 where Ωa is the acoustic frequency and d is the gap width. To first order 

when V , this can be written  p =   20
2 2 cos

2 DC DC AC aV V V t
d


  . The first order term in this 

expression shows that a high value of VDC is required to obtain a high vibration coupling. However, this 
means that the zero order term gives a high static deflection of the membrane, so that the value of d is 
reduced. Therefore, the gap width decreases more strongly than according to a quadratic law, 
eventually yielding an unstable situation in which the membrane collapses onto the bottom of the 
cavity at what we call the snap-in voltage. This is illustrated in Figs. 5 and 6.  Upon further increase of 
VDC  the CMUT stays in a relatively stable collapsed state. By reducing the voltage when in this state, 
the CMUT stays in this same state until well below the snap-in voltage. Eventually it goes back to the 
conventional state at the snap-out voltage.  
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                                           a)                                                                            b) 
 
Fig. 5. Cross sections of CMUT in a) conventional and b) collapsed operation 
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Fig. 6. Deflection of membrane as function of bias voltage, a) principle, b) optically measured response at center of CMUT. 
 
 
In these and subsequent measurements we have used the optical probe in a new way. From previous 
reports (1) we deduce that the detected signal contains the following terms of interest: 
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where the quantities    0 1 0 1, , , andI I    are readout values from the measurement setup. We have 
previously used the following relations for determining the amplitude a and phase  of the vibrations: 

                                                  1
0 1

0

,    22
Ia
I

   


   .  

 
In addition, all other quantities being equal we can image the surface based on the optical reflectivity 
being proportional to 0I  while the topography can be deduced from the surface height. This is given by 

0 
4

.y const 


    These quantities are measured basically in the baseband. Therefore the height 

measurement is dependent on high stability of both optical arms. It is thus of interest to find the 
detection limit of this quantity. In our setup it seems that this stability currently is of the order of 10 nm 
or somewhat larger in a typical measurement series. 
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Based on these considerations we have measured the surface profiles in conventional and collapsed 
operation. A typical result is shown in Fig. 7 where measured profiles across the CMUT and including 
two opposite tabs are shown for the two situations. Also shown is a curve depicting the difference in 
the two profiles, i.e., the actual voltage-induced displacement. It should be noted that certain artifacts 
occur caused by different optical properties of the various materials. These artifacts can give systematic 
errors, but they are not accounted for here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Measured static profiles of CMUT for 0 VDC and 48 VDC which is slightly above the snap-in voltage. The black 
curve is the difference between the two measurements. 
 
 
Inspecting Fig. 5b we expect acoustic resonance frequencies to be generally higher in collapsed 
operation than in conventional operation since the effective membrane width is smaller in the collapsed 
state. Due to lack of symmetry of the CMUTs we decided to make optical frequency scans at four 
different locations as shown in Fig. 8. It is observed that there is a relatively large difference in the 
spectra. Mode patterns for two typical resonances are shown in Fig. 9. 
 
 
Conclusion 
 
We have reported simulations of the non-symmetric CMUT in conventional operation, obtaining 
simulated data agreeing well with measured data. The laser probe has been used to retrieve static 
profiles simultaneously with vibration data. This is an important feature which is not published before. 
In addition, vibration modes under collapsed operation has been measured. Such detection has required 
the laser probe to operate beyond 150 MHz, which is still well below the designed frequency limit of 
about 1GHz. 
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a) b) 
 
Fig. 8. a) Four locations where optical frequency scans shown in b) were made. 
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                                      a)                                                                                   b) 
 
Fig. 9. Mode patterns as measured optically for a) 76.5 MHz and b) 113 MHz 
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3  A. Nikoozadeh, B. Bayram, G.G. Yaralioglu, and B.T Khuri-Yakub, ” Analytical calculation of collapse voltage of 
CMUT membrane”, Proc. 2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Conf., p. 256. 
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