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Abstract

The use of the �nite element method (FEM) for studying the interactions of an acoustic beam with an elastic
steel plate is discussed, in comparison with a 3D angular spectrum method (ASM) and measurements. The
on-axis sound pressure generated by a circular piston source at normal incidence through a steel plate is
investigated. In the 3D ASM, aswell as in the measurements, pulses are utilized in order to propagate an
incident wave towards the steel plate. In these methods the transmitted on-axis pressure is normalized to the
incident on-axis pressure at the upper surface of the steel plate in order to calculate the transmitted frequency
spectrum. Using a frequency domain 3D FEM continues waves are used instead of pulses, creating a standing
wave pattern between the piston source and the steel plate. The transmitted on-axis pressure calculated using
the 3D FEM contains therefore e�ects of this standing wave pattern. In an attempt to reduce these e�ects in
the transmitted frequency spectrum, the total on-axis pressure at the upper surface of the steel plate is used
instead of the incident on-axis pressure. In order to compare the 3D FEM to the 3D ASM and measurements,
the relationship between these two on-axis pressures must be identi�ed.

1. Introduction

The study of an acoustic beam interacting with an elastic steel plate or a pipe wall is important
in many applications such as non-invasive ultrasonic �ow metering [1, 2], NDT(non-destructive-testing)
[3, 4, 5, 6, 7, 8, 9, 10, 11], detection of wax/hydrate-formation [12, 13, 14, 15] and transducer technol-
ogy. Such applications require a comprehensive understanding, control and optimization of the generation,
transmission and reception of sound through plates/pipes and the surrounding �uid. Similar studies using
plane wave theory [16, 17, 18], two dimensional cartesian (2D) angular spectrum methods (ASM) [19, 20, 21]
and three dimensional (3D) angular spectrum methods (ASM) [10, 11, 4] have been made. One limitation in
such models is how the imposed sound �eld is generated. In the plane wave theory the sound �eld is generated
by a plane wave with a certain angle of incidence. Using a 2D ASM, the directivity of the imposed sound
�eld will not be correctly taken into account. In many applications a more realistic and accurate description
of the sound �eld radiated from a real source is needed. The 3D ASM can account for a directive beam,
either by implementing a simpli�ed one, e.g. the sound �eld from a circular piston source, or by importing
a sound �eld from measurements or other simulation models. The transducer construction and properties
are of critical importance for excitation of the desired waveguide. Therefore the transmitting and receiving
transducers should be accounted for in the modeling, for a more complete description of the signal chain. The
�nite element method (FEM) can model a full piezoelectric transducer and its directive beam. In the present
work the feasibility of the 3D FEM for discribing the interaction of an acoustic beam with a steel plate at
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normal incidence is studied, in comparison with a 3D ASM and measurements. Challenges of applying the
3D FEM, regarding the handling of unbounded media, in addition to issues applying a frequency domain
FEM will be discussed.

The 3D ASM used here for comparison [4, 6] uses an uniformly vibrating circular piston source mounted
in a rigid ba�e of in�nite extent for the generation of sound. In the 3D ASM, aswell as in the measurements,
pulses are utilized in order to propagate an incident wave towards the steel plate. In order to compare the 3D
FEM with the 3D ASM the acoustic beam is also generated by a circular piston source in the 3D FEM. Using
a frequency domain 3D FEM continues waves are used instead of pulses, creating a standing wave pattern
between the piston source and the steel plate. A rigid ba�e situated on the sides of the circular piston
will therefore increase the unwanted standing wave pattern considerably. For that reason no rigid ba�e is
included in the FE simulations, minimizing the standing wave pattern, and the uniformly vibrating circular
piston source is immersed in water without any ba�e. Fig. 1 illustrates an acoustic beam generated by a
unba�ed circular piston source and interacting at normal incidence with a steel plate immersed in water. At
normal incidence an 2D axisymmetric coordinate system (r, z) can be used to describe a 3D beam, reducing
the number of �nite elements relative to using a full 3D coordinate system. The steel plate is located at a
distance of 270 mm from the circular piston source. The transmitted on-axis pressure at a distance of 100 mm
below the lower surface of the steel plate is calculated, see '*' in Fig. 1. This on-axis pressure is normalized
to the on-axis pressure at the upper surface of the steel plate, see 'X' in Fig. 1 in order to calculate the
transmitted frequency spectrum. In the 3D ASM and in the measurements the transmitted on-axis pressure
is normalized to the incident on-axis pressure. The transmitted on-axis pressure calculated using the 3D
FEM contains e�ects of the standing wave pattern. In an attempt to reduce these e�ects, the total on-axis
pressure is used, i.e. the on-axis pressure when the plate is present, instead of the incident on-axis pressure.
In order to compare the 3D FEM to the 3D ASM and measurements, the relationship between these on-axis
pressures must be identi�ed.
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FIG 1. An illustration of an acoustic beam, generated by a unba�ed uniformly vibrating circular piston
source, interacting with a 6.05 mm thick water immersed steel plate at normal incidence. The distance
between the piston source and the upper surface of the steel plate is 270 mm. The transmitted on-axis
pressure is calculated at a distance of 100 mm below the steel plate, at '*'. This pressure is normalized by the
on-axis pressure at the upper surface of the steel plate at 'X' for the calculation of the transmitted frequency
spectrum.
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2. Theory

2.1. Leaky Lamb waves for an elastic plate (plane waves)

A traditional way of studying guided waves in an elastic isotropic plate of in�nite extent is using the leaky
Lamb wave theory [22]. Fig. 2 gives a schmatic illustration of leaky wave propagation in an in�nite elastic
plate of thickness 2L, immersed in a �uid (semi-in�nite half spaces above and beneath the plate). The arrows
above the plate shows the directions of the incident and re�ected compressional waves with a velocity of cl.
The density of the �uid is ρf . Inside the plate, waves with shear velocity cS and compressional velocity cL
are established respectively, where ρs is the density of the plate. Beneath the plate a compressional wave is
transmitted into the �uid.

FIG 2. Schematic illustration of leaky wave propagation in an in�nite long and wide solid plate with a
thickness 2L. The solid plate is immersed in two semi-in�nite half spaces of water. The arrows indicate
the direction of the waves established by the incident compressional wave. Schematic representation for an
oblique angle of incidence.

For certain frequencies standing compressional and shear waves are present across the thickness of the
plate [4, 22]. These frequencies occur where the phase velocity for the generated Lamb waves of the solid plate
approaches in�nity [23]. The frequencies can be calculated from the dispersion equations for the symmetrical
and antisymmetrical leaky Lamb modes by letting the horizontal wavenumber η approach zero [4, 5]. Since
the ratio between the density of the steel plate and the water is high, this condition is almost equivalent
to using a normal incidence plane wave from the �uid to generate these resonances in the steel plate. The
critical frequencies fL,n and fS,n for thickness extensional (TE) and thickness shear (TS) modes in the plate
respectively are given as [4, 5]

fL,n =
cLn

4L
, (1)

fS,n =
cSm

4L,
, (2)

where n, m = 1,2,3,... These frequencies can be used to determine the compressional cL and shear velocity cS
of the steel plate by measuring the frequencies where a maximum or a minimum of the transmitted pressure
is calculated [4].
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2.2. 3D Angular spectrum method (ASM)

The angular spectrum method (ASM) models the propagation of a beam by representing the wave pattern
as an integration of plane waves. The method propagates a known pressure �eld at a reference plane from that
plane to other parallel planes in the frequency-wavenumber domain using the spatial 2D Fourier transform
[4, 6]. This calculation of the pressure �eld includes di�raction and re�ection/transmission through the
di�erent planes employed. The 3D ASM used in this paper is described in [4] and uses the far �eld solution of
the sound �eld radiated by an uniformly vibrating circular piston source mounted in a rigid ba�e of in�nite
extent, for the known pressure �eld at the reference plane. The piston source can have an oblique angle of
incidence towards the steel plate immersed in water as investigated in [4, 6], but in this work a comparison
with normal incidence results from [4, 6] are used. This method can then calculate the incident or total
(incident + re�ected) on-axis pressure at the upper surface of the steel plate, and the transmitted pressure at
a certain distance below the lower surface of the steel plate, making it possible to calculate the transmitted
frequency spectrum and time domain signals. Further details on the 3D ASM is given in [4, 6].

2.3. 3D Finite element method (FEM)

The 3D �nite element (FE) implementation used here is FEMP 5 [24, 25, 26], which is a frequency domain
implementation. For axisymmetric simulations this implementation uses 8 node isoparametric elements for
both the �uid and elastic �nite elements [24]. For the handling of an in�nite �uid region perfectly matched
layers (PMLs) [26, 27, 28, 29] are used here. The PML method can be interpreted as a coordinate stretching
in the frequency domain through a complex change of variables. In the direction x, where x denotes either r
or z, the coordinate transformation is

∂

∂x
→ ∂

∂x‘
=

1

γx

∂

∂x
, (3)

where γx is de�ned by

γx = 1 +
i

ω
σx(x) , x ≥ x∗ (4)

γx = 1 , x < x∗. (5)

The damping function σ used in this paper is an 'optimal' damping function introduced by [28]

σ =
cl

x∗ − x
, (6)

where x∗ is truncation of the normal �uid region in the x direction, and cf is the compressional sound velocity
in the �uid. In the FE implementation used, there is no possibility for having frequency dependent mass- and
sti�ness matrices [26]. In order to get the frequency dependency out of Eq. 4 a σ∗ is de�ned as σ∗ = σω/ω0

[26] and used for σx, see Eq. 7.

γx = 1 +
i

ω0
σ(x) , x ≥ x∗ (7)

For modelling an in�nite elastic medium without end re�ections (such as for the plate) a �decreasing QM �
method [12] has been employed here since for the current version of FEMP 5, PML for elastic regions [26]
have not been implemented yet. This �decreasing QM � method reduce the loss factor QM exponentially
inside a region of an elastic medium to approximately zero, thus reducing the re�ections from the endfaces
of that region.
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2.4. Transmitted frequency spectrum (TFS) for the 3D ASM and the 3D FEM

The �transmitted frequency spectrum� (TFS) is here de�ned as

TFSMODEL0 =
pMODEL

pMODEL0

, (8)

where pMODEL is the transmitted on-axis pressure at a distance of 100 mm below the steel plate for the
MODEL applied, either 3D FEM or 3D ASM, see '*' in Fig. 1. The pMODEL0 is the on-axis pressure in the
�uid at the upper surface of the steel plate, see 'X' in Fig. 1.

In this paper two on-axis pressures p0, denoted pinc and ptot, see Eq. 9, are used to normalize the
transmitted on-axis pressure pMODEL for both the 3D ASM and the 3D FEM. These normalization methods
are denoted normalization method no. 1 ('norm 1') and normalization method no. 2 ('norm 2') respectively
as

p0 =

{
pMODELinc , for normalization method no. 1

pMODELtot , for normalization method no. 2

}
(9)

The incident on-axis pressure pinc in the water at the upper surface of the plate when the plate is absent
is used for p0 in normalization method no. 1, in order to compare the simulations to the measurements made
by [4, 6]. Using the 3D FEM, standing waves appear between the unba�ed circular piston source and the
upper surface of the plate. In an attempt to reduce the e�ects the standing wave pattern will have on the
transmitted frequency spectrum the total on-axis pressure ptot in the water at the upper surface of the plate
when the plate is present is used for p0 in normalization method no. 2.

For the 3D ASM the transmitted frequency spectra with normalization method no. 1 and no. 2 are
expressed respectively as

TFSASMinc =
pASM

pASMinc

, TFSASMtot =
pASM

pASMtot

. (10)

For the 3D FEM the transmitted frequency spectra with normalization method no. 1 and no. 2 are
expressed respectively as

TFSFEM,swinc =
pFEM,sw

pFEMinc

, TFSFEMtot =
pFEM,sw

pFEM,swtot

, (11)

where the superscript sw denotes that the e�ects of the standing waves are present. Here the e�ects of the
standing wave pattern are assumed to be the same for the transmitted pFEM,sw and total on-axis pressure
pFEM,swtot , so that the e�ects of the standing wave pattern is removed in the TFSFEMtot , written then without the
superscript sw. Mark that the incident on-axis pressure pFEMinc and pASMinc are not the same, since an unba�ed
piston source is used in the 3D FEM in contrast to a ba�ed piston source the 3D ASM, see more in Section
5.3. Mark also that the pressure pFEM,swtot includes the standing wave pattern between the piston source and
the plate, in constrast to the pASMtot which includes the imposed incident wave and the re�ected wave at the
upper surface of the plate.

In the �gures throughout this paper the transmitted on-axis pressure is denoted p, and the on-axis pressure
used for the normalization is denoted p0, regardless of which model and normalization method used. In every
case, the model and normalization method used to calculate the TFS is given explicitly, either in the text or
in the �gure label.
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3. Experimental setup

The measurements are described in [4, 5, 6]. A 6.05 mm thick, 500 mm wide and 760 mm long AISI 316L
stainless steel plate is immersed in water in a tank with dimensions (150×60×60) cm (length×height×width),
see Fig. 3. A Panametrics V301 500 kHz transducer is mounted on the left side of the steel plate at
normal incidence towards the steel plate. A Precision Acoustics (PA) 1 mm needle calibrated PVDF probe
hydrophone (PA-407) is mounted on the far side of the steel plate, see the sketch in Fig. 3. The distance
between the transducer and the steel plate is 270 mm. The transmitted on-axis pressure pMEAS at a distance
100 mm from the right surface of the steel plate is measured by the hydrophone for each frequency in the
frequency range of interest. This transmitted pressure is normalized to the incident on-axis pressure pMEASinc

at the front surface of the steel plate when the plate is absent, in order to calculate the TFSMEASinc [4, 6]. The
steel plate was therefore removed and the hydrophone was moved to the position of the left surface of the
steel plate for the incident on-axis pressure measurements. For more information regarding the measurements
refer to [4, 6].

FIG 3. Sketch of the measurement tank with the 6.05 mm thick steel plate immersed in water. A Panametrics
V301 500 kHz transducer is mounted on the left hand side of the steel plate, and the transmitted pressure is
measured by a PA 1 mm needle hydrophone on the right hand side of the steel plate.

4. Simulations

4.1. Leaky Lamb waves for an elastic plate (plane waves)

The plane wave pressure transmission coe�cient T in Eq. 12 is calculated using the leaky Lamb wave
theory for a 6.05 mm thick water immersed in�nite long steel plate [4, 5].

T =
pt
pi
, (12)

where the transmitted pressure pt at the lower surface, see Fig. 2 (right surface in Fig. 3), of the steel plate
is normalized to the incident pressure pi on the upper surface, see Fig. 2 (left surface in Fig. 3), of the steel
plate. The material data for the steel plate and the surrounding water are listed in Table. 1.

TABLE 1. Material properties used in the leaky Lamb wave theory [4, 5], the 3D ASM [4, 6] and the 3D
FEM.

Material ρ [kg/m3] cL[m/s] cS [m/s]
AISI 316L stainless steel 8000 5780 3050

Water 1000 1483 -
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4.2. 3D Angular spectrum method (ASM)

An uniformly vibrating circular and ba�ed piston source with a radius of 12.9 mm radiating at normal
incidence towards a 6.05 mm thick steel plate is used in the 3D ASM [4, 6]. The distance between the piston
source and the plate is 270 mm, and the distance between the plate and the receiver is 100 mm, see Fig.
1. The material data for the steel plate and water are given in Table. 1, the same as for the plane wave
theory. The transmitted on-axis pressure pASM at a distance of 100 mm below the steel plate is calculated
and normalized to the incident pASMinc or the total pASMtot on-axis pressure on the upper surface of the steel
plate respectively. The normalization methods are discussed in detail in Section 2.4. For more information
of the implementation of the 3D ASM it is refered to [4, 6].

4.3. 3D Finite element method (FEM)

In an axisymmetric coordinate system (r, z) an uniformly vibrating circular piston source with the center
of the surface in origo (0, 0), radiates at a certain frequency into the surrounding water. The radius of the
piston is 12.9 mm and the thickness is 0.01 mm. The piston has a forced displacement with an amplitude of
1 × 10−6 mm (1 nm) along the z-axis over the entire surface for each simulated frequency. A circular steel
plate is present at a distance of z = −270 mm from the piston surface, with a radius of r = 400 mm. The
steel plate thickness is 2L = 6.05 mm. The circular piston has a normal incidence towards the steel plate, see
Fig. 1 for a description. The material data are given in Table. 1, exept the loss factor QM for the steel plate.
In the leaky Lamb wave theory and the 3D ASM the steel plate is assumed lossless. Since the �decreasing
QM � method must be used to dampen the outgoing waves in the steel plate a loss factor QM for the steel
plate must be assumed, and here QM = 100 has been used. In comparison of the results to the measurements
in Section 5 this QM may seem a bit low, but was used in order to properly reduce the endface re�ections in
steel plate for these simulations.
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FIG 4. A decimated mesh of the axisymmetric FE simulation with
PMLs (red regions) around the �uid regions (blue) and the steel
plate (green region). PMLs extends outwards 100 mm in both
directions from the endfaces of the regions, and the �decreasing
QM � method begins in r = 100 mm. This coarse element divi-
sion is used for illustration only, and is not used for the actual
simulations.

A coarse decimated mesh of the FE
simulations is shown in Fig. 4 in order to
visualize the implementation of the cir-
cular piston source, the steel plate and
the �uid PMLs. The element division
in this �gure is less detailed than the
actual simulations. Here �uid perfectly
matched layers (PMLs) are used to pre-
vent re�ections from the endfaces of the
water (blue) regions with damping func-
tion de�ned in Eq. (6). The PML layer
thickness extends outwards 100 mm in
both the radial and thickness directions
from the endfaces of the �uid regions,
indicated in Fig. 4 by the red colored
regions. The mid frequency of the fre-
quency range, f0 = 675 kHz, has been
used to get a frequency independent σ.
The piston source is implemented with
the center of the front surface in origo,
indicated with a red box in Fig. 4. The
steel plate is indicated in green in Fig.
4 with the �decreasing QM � method im-
plemented from r = 100 mm to the end-
face of the steel plate. In this region the
QM for the steel plate is exponentially
reduced from 100 to 0.001. The water re-
gion above the piston source extends 50

7



mm in the z direction, and the water region below the steel plate extends 150 mm in the −z direction. The
frequency range of the simulations is from 350 kHz to 1 MHz, with 1 kHz step. 3 elements per compressional
and shear wavelength at the maximum frequency of interest, fmax = 1 MHz, was used as the element division
for the water and steel plate respectively. In the position along the plate where the PMLs are applied, the
�uid PML element grid is in connection with the steel plate. This is in contradiction to [12] where a small
gap is used, but for the setup used in this paper a connection between the �uid PML elements and the steel
plate provides a better result. The time harmonic analysis [24] is used to calculate the pressure at all nodes
in the water regions for each frequency of interest. The transmitted on-axis pressure pFEM,sw is calculated at
the on-axis node located nearest to the point at 100 mm below the lower surface of the steel plate, see '∗' in
Fig. 1. For all FE simulations the transmitted on-axis pressure pFEM,sw is calculated at the on-axis node at
99.70356 mm below the lower surface of the steel plate.

5. Results

5.1. Leaky Lamb waves for an elastic plate (plane waves)

The plane wave pressure transmission coe�cient T for the plate immersed in water using leaky Lamb
wave theory is presented in Fig. 5. The �gure shows the magnitude of the transmission coe�cient |T | for
di�erent incidence angles and for the frequency range of interest here. Maximum transmission coe�cient
|T | corresponds to where the symmetrical and antisymmetrical Lamb modes, S1, S2, A2 and A3 (where
S denotes symmetrical, A denotes antisymmetrical) are excited in the steel plate [4, 6]. As the angle of
incidence approaches zero the symmetrical and antisymmetrical Lamb modes in the plate approach the
critical frequencies, creating standing waves (TE and TS respectively) across the thickness of the steel plate,
see Eqs. (1) and (2).

7� 7�

%�

%�

FIG 5. Magnitude of the pressure transmission coe�cient, |T |, for leaky Lamb modes in a 6.05 mm steel
plate with water loading [4]. A maximum pressure transmission coe�cient |T | corresponds to excitation of
either the S1, S2, A2 and A3 mode in the plate. At normal incidence the S1 and A3 modes create thickness
extensional (TE) modes across the thickness of the steel plate, which are marked with green dots. At normal
incidene the TS modes are not excited, in terms of plane wave theory. At an incidence angle of 0.2◦ the S2

and A2 modes approach the thickness shear (TS) modes across the plate thickness, marked with red dots,
[4].
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As a plane wave with normal incidence to the plate only generates an extensional displacement in the
plate, this plane wave will only excite compressional waves inside the plate. For that reason a plane wave
at normal incidence cannot excite TS modes inside the plate, and the Lamb modes corresponding to these
modes, the S2 and the A2 mode, will vanish as the incidence angle of the imposed plane wave approaches zero.
The magnitude of the pressure transmission coe�cient |T | at normal incidence is presented in Fig. 6 as the
black line [4, 6]. The frequencies where the |T | has a maximum, corresponds to the frequencies of the S1 and
A3 modes. At these frequencies, a standing TE mode will occur across the thickness of the steel plate. As the
imposed plane wave has a normal incidence angle towards the plate no TS modes will be excited. Introducing
a small incident angle of 1◦ the imposed plane wave will cause, in addition to an extensional displacement,
a displacement in the radial direction of the plate. This radial displacement gives shear displacement which
causes excitation of TS modes. The magnitude of the pressure transmission coe�cient |T | at 1◦ incidence
angle is presented in the same �gure as the blue line. Here the S2 and A2 mode will also be excited, causing
a minima in |T |. The frequencies where these minima appear correspond approximately to the frequencies
where TS modes are present across the thickness of the plate [4, 6]. No losses are included in the steel plate.
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FIG 6. Magnitude of the pressure transmission coe�cient |T | at normal incidence and 1◦ angle of incidence
(black and blue line respectively) using leaky Lamb wave theory [4, 6].

5.2. 3D Angular spectrum method (ASM)

In Fig. 7 the TFSASMinc is presented as the solid red line, together with the results from Fig. 6. Since the
3D ASM imposes a directive beam across the surface of the steel plate, displacements in both the thickness
and radial direction will occur at normal incidence of the beam, since a beam contains a spectrum of plane
waves with incidence angles from 0 to > 0. Both compressional and shear waves are thus set up in the plate,
thereby exciting both TE and TS modes in the plate at normal incidence. There is a close agreement between
the results using the 3D ASM and the plane wave theory for the frequencies where the magnitude of the
pressure transmission coe�cient |T | and the TFSASMinc has maxima or minima, except around the S1 mode. A
shift downwards in frequency can here be experienced for the 3D ASM compared to the maximum calculated
using the plane wave theory. One possible explanation may be that the beam excites both the S1 and S2

mode by various degree for the frequencies in that speci�c frequency range, since a beam contains a spectrum
of plane waves with various incidence angles. Another possible explanation may be that using a beam causes
the S1 mode to shift downwards in frequency, recall that the S1 mode in Fig. 5 shifts downwards in frequency
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when an incidence angle di�erent from zero is introduced. Comparing the plane wave transmission coe�cient
|T | (black and blue lines) to the TFSASMinc (red line) there exists a di�erence in magnitude of approximately
3 dB for frequencies away from the maxima and minima. Recall that the TFSASMinc is calculated from the
transmitted on-axis pressure pASM at a distance of 100 mm from the lower surface of the plate, and the
pressure transmission coe�cient |T | is calculated at the lower surface. If the pressure pASM is extrapolated
to the lower surface of the plate, and since the pressure amplitude is inversely propotional to the range (a
distance of 100 mm), an increase of the pressure pASM of approximately 3.16 dB will be experienced. A closer
agreement for frequencies away from the Lamb modes for that case (red-dotted line) and the magnitude of
the transmission coe�cient |T | can be observed in Fig. 7.

400 500 600 700 800 900 1000
−50

−40

−30

−20

−10

0

10

Frequency [kHz]

2
0

lo
g

1
0
|T

| 
[d

B
 r

e
. 

1
] 

o
r 

2
0

lo
g 1

0
| 
p

/p
0
 |
  

[d
B

]

 

 

3D ASM − with norm 1

plane wave (0° incidence)

plane wave (1° incidence)

3D ASM − with norm 1 + 3.16 dB

7�

7�

%�

%�

7�

FIG 7. The TFS p/p0 at normal incidence using the 3D ASM (red line) [4, 6] and the plane wave transmission
coe�cient T at normal incidence and 1◦ (black and blue line) using plane wave theory [4, 6]. The pressure
pASM for the 3D ASM is calculated at 100 mm below the steel plate, and normalized to the incident pressure
pASMinc in the water at the upper surface of the steel plate when the plate is absent, i.e. using normalization
method no. 1. The TFSASMinc with an increase of 3.16 dB is shown as the red-dotted line.

5.3. 3D Finite element method (FEM)

The 3D FEM uses an uniformly vibrating circular piston source immersed in water without any ba�e.
The far �eld directional factor D(θ) for the unba�ed piston at the upper surface of the steel plate when the
plate is absent using the 3D FEM (blue line), at z = −270 mm, is presented in Fig. 8. This directional factor
is compared to the far �eld directional factor at a distance of 1 m from a uniformly vibrating circular piston
source mounted in a rigid ba�e of in�nite extent (red line), the source used in the 3D ASM. The far �eld
directional factor D(θ) is calculated for four frequencies, 400 kHz, 500 kHz, 600 kHz, 700 kHz, presented in
Fig. 8, in [6] the directional factor for the same frequencies are compared to measurements made by [4]. The
rayleigh distance for the speci�c frequencies are 141 mm, 176.4 mm, 211.5 mm and 246.7 mm respectively.
The directional factor D(θ) is normalized to the maximum pressure pmax at z = −270 mm and 1 m respec-
tively.

Using the 3D FEM, the pressure �eld from the unba�ed circular piston source at 350 kHz has been
calculated with and without the steel plate present, see Fig. 9(a) and Fig. 9(b) respectively. In Fig. 9(a)
the outgoing pressure from the piston source used in the normalization method no. 1 is demonstrated. From
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the de�nition of the PMLs in Eq. (3) the PMLs will only dampen waves in one direction. Since the PMLs
shall suppress outgoing waves in the radial direction for an axisymmetrical simulation the PMLs may not
provide an accurate damping in relation to a full 3D solution where PMLs dampen re�ections in the x, y and
z directions respectively [26].

In Fig. 9(b) a standing wave pattern between the circular piston source and the steel plate can be
observed. From such a simulation the transmitted on-axis pressure pFEM,sw at a distance of 99.70356 mm
below the lower surface of the steel plate is calculated. This pressure will be a�ected by the standing wave
pattern created between the piston source and the steel plate. In order to reduce the e�ects this standing
wave pattern will have on the transmitted frequency spectrum the normalization method no. 2 is used. The
sound �elds are shown in the �uid, to the start of the PML regions.
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(d)

FIG 8. Far �eld directional factor D(θ) of the unba�ed piston calculated using 3D FEM (blue line) and the
ba�e piston model (red line)(used as input to the 3D ASM), respectively, at (a) 400 kHz and ka = 21.86,
(b) 500 kHz and ka = 27.33, (c) 600 kHz and ka = 32.79, (d) 700 kHz and ka = 38.26. a = 12.9 mm. The
rayleigh distance for the speci�c frequencies are 141 mm, 176.4 mm, 211.5 mm and 246.7 mm respectively.

The TFSFEM,swinc and TFSFEMtot at normal incidence is presented in Fig. 10 in comparison with the TFSASMinc

and TFSASMtot . The TFSFEM,swinc oscillates approximately ± 8 dB around the TFSASMinc , shown in Fig. 7, but
the overall frequency dependencies of the spectra are very similar. pFEMinc does not include the e�ects of the

standing waves, and therefore will these e�ects be present in the TFSFEM,swinc , see Eq. (11). Calculating

the TFSFEMtot the oscillations present with normalization method no. 1 have almost vanished, and a closer
agreement with the TFSASMtot can be observed. There is a small magnitude di�erence between the two methods,
probably since the 3D FEM assumes a lossy steel plate where the 3D ASM does not. In addition there are
small oscillations in the TFSFEMtot , possibly that the e�ects of the standing wave pattern are not entirely
removed, or that there may exist small re�ections from the endfaces of the �uid regions and/or the plate.
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(b)

FIG 9. The pressure �eld from a circular piston source at 350 kHz simulated using �nite elements. The
piston source is indicated by the black rectangle at origo. The steel plate thickness is 6.05 mm. In Figs. 10 -
13 the transmitted on-axis pressure pFEM,sw is calculated at '*', and the normalization on-axis pressure p0 is
calculated at 'X'. (a) The steel plate is absent. (b) The steel plate is present, indicated by the black rectangle
at z = -270 mm.

Fig. 10 indicates that the normalization method no. 2 may be useful for calculating the transmitted
frequency spectrum using the 3D FEM. Recall that the normalization method no. 2 uses the total on-axis
pressure pFEM,swtot in the water at the upper surface of the plate. The measurements made by [4, 6] uses the
incident on-axis pressure pMEASinc in the water at the upper surface of the plate to normalize the transmitted
on-axis pressure pMEAS (normalization method no. 1). In order to compare the TFSFEMtot to the measurements
made by [4, 6] the relationship between the two normalization methods must be calculated.

The TFSASMinc may be expressed as

TFSASMinc =
pASM

pASMinc

=
pASM

pASMtot

pASMtot

pASMinc

. (13)

which can be expressed using Eq. (10) as

TFSASMinc = TFSASMtot

pASMtot

pASMinc

, (14)

where pASMtot /pASMinc gives the ratio between the TFS for the two normalization methods in the 3D ASM.
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FIG 10. Transmitted frequency spectra at normal incidence using the 3D ASM and 3D FEM. Transmitted
on-axis pressure calculated at 100 mm below the steel plate for the 3D ASM, and 99.70356 mm for the 3D
FEM. The transmitted pressure p calculated using the 3D FEM and the 3D ASM are normalized with both
normalization methods.

The same can be expressed for the TFSFEM,swinc as

TFSFEM,swinc =
pFEM,sw

pFEMinc

=
pFEM,sw

pFEM,swtot

pFEM,swtot

pFEMinc

, (15)

which can be expressed using Eq. (11) as

TFSFEM,swinc = TFSFEMtot

pFEM,swtot

pFEMinc

, (16)

where pFEM,swtot /pFEMinc gives the ratio between the TFS for the two normalization methods in the 3D FEM.

If the elastic steel plate were a rigid plate, excluding internal wave propagation, the ratio ptot/pinc = 2,
i.e. a 6 dB di�erence between the two normalization methods. From Fig. 10 a di�erence in magnitude of
approximately 6 dB can be observed between the normalization methods, exept around the Lamb modes of
the steel plate. However, as the plate is not rigid, but supports elastic waves, one may expect deviations
from such a simpli�ed rigid-plate consideration, especially around the Lamb modes of the plate.

A more re�ned method for calculating the ratio ptot/pinc has been used. The perferable choice would be
to calculate this ratio using the 3D FEM. However, since pFEMinc cannot include the standing wave pattern

that will be present in pFEM,swtot , the e�ects of the standing wave pattern cannot be removed from that ratio,

and will be present in the TFSFEM,swinc , see Eq. (16). Instead, the ratio has been approximated by using the
3D ASM [4, 6] with a lossy steel plate with a QM = 100. The ratio will then include the e�ects the plate
will have on the total on-axis pressure pASMtot , but not the e�ects of the standing wave pattern present in

pFEM,swtot . Fig. 11 presents the ratio between the normalization method no. 2 and the normalization method
no. 1, pASMtot /pASMinc , see Eq. (14). Away from the Lamb modes an approximate 6 dB di�erence between the
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two normalization methods is observed. Around the Lamb modes the ratio becomes smaller, probarly due to
resonance e�ects, see Fig. 5 where the plane wave transmission coe�cient |T | has maxima in near proximity
of the di�erent symmetrical Lamb modes. If this ratio (Fig. 11) is added to the TFSFEMtot (blue line) (Fig. 10)
a closer agreement to the TFSASMinc (red line) can be observed, see Fig. 12, except around the Lamb modes,
possibly because the 3D ASM does not include losses in the steel plate.
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FIG 11. The ratio between the total (incident + re�ected) on-axis pressure pASMtot (norm no. 2) when the
plate is present to the incident on-axis pressure pASMinc (norm no. 1) when the plate is absent using the 3D
ASM [4]. A lossy steel plate with a QM = 100 is assumed for the 3D ASM.

From the measurements on the steel plate, described in Section 3, a new shear velocity of cS = 3130 m/s
was determined [4]. In order to compare the simulation results to the measurements, simulations with a new
shear velocity of the steel plate are calculated. In Fig. 13 a comparison of the simulated (3D ASM and 3D
FEM) and measured (black line) transmitted frequency spectra are presented, the TFSASMinc (red line) and
the TFSFEMtot (blue line) with a ratio similar to Fig. 11 included (the ratio for the simulation corresponds to
Fig. 11 with cS = 3130 m/s, not shown here). This �gure demonstrates a relative close agreement between
both methods and the measurements, but the same magnitude di�erences present in Fig. 12 between the
3D FEM and 3D ASM around the Lamb modes are still present. The TFSMEASinc is limited to the frequency
range of 350 kHz to 800 kHz. The magnitude di�erence at the S1 mode indicates that the QM = 100 for
the steel plate in the 3D FEM is to low, and possibly a higher QM would provide a closer agreement with
measurements.
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FIG 12. TFS at normal incidence for the 3D ASM with normalization method no.1 (red line), and the 3D
FEM (norm 2), corrected using pASMtot /pASMinc from Fig. 11 (blue line). The transmitted on-axis pressure is
calculated at 100 mm below the steel plate for the 3D ASM, and at a distance of 99.70356 mm for the 3D
FEM.
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FIG 13. TFS at normal incidence for the 3D ASM (red line) and the 3D FEM (blue line) in comparison with
the spectrum measured by [4, 6]. The transmitted on-axis pressure is calculated at 100 mm below the steel
plate for the 3D ASM, and at a distance of 99.70356 mm for the 3D FEM. The transmitted on-axis pressure
calculated using the 3D FEM is normalized with method no. 2 and with a ratio similar to Fig. 11 included.
The 3D ASM is normalized using normalization method no. 1.
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5.4. Critical frequencies

In [4] a measurement method for determing the sound compressional and shear velocity of an elastic steel
plate is discussed. The discussion is based on the plane wave pressure transmission T and TFSASMinc , with
emphasis on which Lamb modes that could be used in such a method. It is of interest to investigate how this
approach would relate to the use of the FEM.

Here, the TFSFEMtot is compared to the results in [4]. From the plane wave theory presented in Section 2.1,
standing compressional (TE) and shear (TS) waves will be present across the thickness of a plate for certain
frequencies. At these frequencies the compressional and shear velocity can be calculated from Eqs. (1) and
(2) respectively, see Section 2.1 and [4].

The critical frequencies in Eq. (1) correspond to the frequencies where the magnitude of the plane wave
transmission coe�cient |T | in Fig. 6 at normal incidence (black line) has a maximum. Since a plane wave
at normal incidence only generates an extensional displacement, a plane wave with an 1◦ incidence angle,
see Fig. 6 (blue line), is used to approximate the critical frequencies in Eq. (2) where the magnitude of the
plane wave transmission coe�cient |T | has a minimum. These frequencies are given in Table 2.

In Fig. 7 the frequencies where the TFSASMinc has a maximum or a minimum can be determined. These
are presented in the third column in Table. 2. There is a close agreement between these frequencies and the
ones determined from Fig. 6, exept for the frequency corresponding to the S1 mode, as expected from the
deviations in Fig. 7 between the TFSASMinc and the plane wave theory at normal incidence.

In Fig. 10 the frequencies where the TFSFEMtot has a maximum or a minimum can be determined. These
are presented in the fourth column in Table 2. Comparing these frequencies to the frequencies determined
from the TFSASMinc there is a relative close agreement for all four frequencies.

TABLE 2. Frequencies corresponding to a maximum or a minimum for the magnitude of the plane wave
transmission coe�cient |T | [4]. Frequencies corresponding to a maximum or a minimum of the TFSASMinc [4]
and the TFSFEMtot . The * indicates a 1◦ incidence angle with the steel plate. (w.t � wave theory)

Leaky Lamb w.t, Fig. 6 TFSASMinc , Fig. 7 TFSFEMtot , Fig. 10
fL,1 [kHz] 477.7 454.5 457.7
fS,2 [kHz] 504.5* 504.2 506.2
fS,3 [kHz] 756.5* 755.9 759.9
fL,2 [kHz] 955.4 956.7 957.4

The frequencies in Table 2 have been used to calculate the compressional and shear velocities of the steel
plate using Eqs. (1) and (2) respectively, for each model. The calculated sound velocities of the steel plate
are given in Table 3 for each model, determined at each frequency given in Table 2. A comparison between
the plane wave results and the input simulation parameters, cL = 5780 m/s and cS = 3050 m/s (see Table
1), demonstrates a close agreement for all four frequencies.

The frequencies in Table 2 for the TFSASMinc and the TFSFEMtot are used to calculate the sound velocities
in the steel plate using the same equations as for the plane wave, Eqs. (1) and (2). The determined sound
velocity is presented in the third and fourth column of Table 3 respectively. A comparison with the material
data for the steel plate illustrates a relative close agreement for the sound velocities calculated from the
frequencies in Table 2, exept for the compressional velocity determined at the frequency corresponding to
the S1 mode. This indicates that the S1 mode may not be used for determining the compressional velocity
in the steel plate for a real directive beam, but that using the S2, A2 and A3 mode may provide a reasonable
estimate of the sound velocities.

16



TABLE 3. Calculated sound velocities using Eqs. (1) and (2) with the frequencies listed in Table 2. The *
indicates a 1◦ incidence angle with the steel plate.

Leaky Lamb wave theory TFSASMinc TFSFEMtot

cL,1 [m/s] 5780.17 5499.45 5538.17
cS,2 [m/s] 3052.23* 3050.41 3062.51
cS,3 [m/s] 3051.22* 3048.79 3064.93
cL,2 [m/s] 5780.17 5788.04 5792.27

6. Conclusions

3D FEM has been applied to study the interaction of an acoustic beam with an elastic steel plate at normal
incidence. Due to the normal incidence and the frequency domain 3D FEM, a standing wave pattern between
the piston source and the steel plate is present in the FE simulations. Since the transmitted on-axis pressure
is a�ected by this, a normalization method is employed, which attempts to remove these e�ects. In order
to compare the 3D FEM with the 3D ASM and measurements, a relationship between this normalization
method and the one used for the 3D ASM and the measurements is presented. The relationship has been
derived using the 3D ASM, and the 3D FEM using this relationship has been successfully compared to the 3D
ASM and measurements. There are still small deviations in the TFS, possibly due to the losses included in
the 3D FEM. The transmitted frequency spectrum of the beam using the 3D FEM has also been successfully
compared to the results in [4], for the proposed method for determining the compressional and shear sound
velocity in the steel plate.
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