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Abstract

A thin rubber coating with cavities in a periodic lattice can redistribute sound energy,
normally incident on a steel plate in water, in the lateral direction. The scattered en-
ergy can be absorbed by the rubber material and the reflection amplitude in the water
can be reduced significantly. Coatings with different geometric cavity types are here
compared: spheres, (super)ellipsoids, cylinders with circular cross-sections, and cylin-
ders with (super)elliptic cross-sections. In the latter cases, the cylinder axes are parallel
to the coating. Spheres and (super)ellipsoids appear in a doubly periodic lattice, while
the cylinders appear in a lattice with a single period. Each coating type is optimized
by differential evolution, varying a number of material and geometrical parameters to
minimize the maximum reflectance within a certain frequency band. The layer multiple-
scattering method is used as forward model. To achieve good low-frequency broad-band
reflectance reduction with a thin coating, it is advantageous to extend the cavities in the
lateral directions and to mix cavities of different sizes. Very good results are obtained
for cylindrical cavities with superelliptic cross-sections.

1 Introduction

Phononic crystals (PC) have mainly been applied to sound shielding, i.e., reduction
of sound transmission, but reduction of sound reflections has also been considered.
One particular application of the latter type concerns underwater anechoic coatings of
Alberich type, i.e., rubber coatings with a periodic lattice of cavities or other scatterers.
A coating should be thin and provide significant reflection reduction over a broad
frequency band. The design problem can be formulated numerically as a nonlinear
optimization problem. Hence, global optimization techniques from inverse theory can
be applied, such as differential evolution (DE) [1].

For cavities in a doubly periodic lattice, results in [2] show that extension of spheres
in the lateral direction, to form oblate superellipsoids, is useful to obtain good re-
flectance reduction at low frequencies with a thin coating. Infinite extension of a sphere
in one lateral direction leads to a cylinder with circular cross-section. Such cavities are
considered in [3]. Again, the extension is seen to promote reflection reduction efficiency
at low frequencies. In the mentioned papers, DE is used for coating optimization with
the layer multiple scattering (LMS) method as forward model. Cavities of one and two
sizes are considered.
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In the present paper, the cylinders are extended in the orthogonal lateral direction
to produce oblate superelliptic cross-sections. Transition matrices (T-matrices) of such
cavities, needed for the LMS method, are computed by adapting a null-field approach
for smooth rotationally symmetric 3-D bodies by Boström [4] to the 2-D case. Coatings
with different geometric cavity types are compared. Some design results from [2], for
coatings with sphere and superellipsoid cavities, are first recapitulated in Secs. 2 and 3,
respectively. Corresponding design examples with cylindrical cavities are subsequently
studied in Sec. 4, for cylinders with spherical cross-sections, and in Sec. 5, for cylinders
with superelliptic cross-sections. Scattering and absorption cross-sections are computed
for isolated cavities of the different shapes to better understand the coating design
results.

2 Coatings with sphere cavities

Fig. 1 shows a steel plate that is coated by a rubber layer with spherical cavities. The
cavities appear in a doubly periodic lattice with period d. All cavities in panel (a) are
of the same size, case (a), whereas there are two cavity sizes in panel (b), case (b).
A Cartesian xyz coordinate system is introduced, and a monofrequency plane sound
wave is normally incident from the water half-space on top. All the time, all cavities
are placed at the bottom of the coating, in direct contact with the steel plate.

Parameters for steel are fixed at 5850 and 3230 m/s for the compressional- and
shear-wave velocities, respectively, and 7700 kg/m3 for the density. The sound velocity
of water is 1480 m/s. Only the rubber is anelastic, with a shear-wave absorption of
25 dB/wavelength. The compressional-wave absorption for the rubber is either set
to the least value consistent with the physical constraint for the bulk modulus (case
Pabsorpmin) or to 10 dB/wavelength (case Pabsorp10).
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Figure 1: A steel plate is covered with an Alberich rubber coating with sphere cavities in a square
lattice with period d. Case (a) in the left panel involves one cavity type, whereas case (b) in the right
panel involves two cavity types. In each case, Cartesian xyz coordinates are shown, with the y axis
going out of the paper plane. The cavity lattice has period d in x as well as y, and the lattice for the
small spheres in case (b) is displaced d/2 not only in the x direction but also in the y direction.

The objective function, for DE minimization in the coating design examples to
follow, is specified as the maximum reflectance in the frequency band 8-22 kHz. Re-
flectance is here time- (and space-) averaged reflected energy flux relative to the time-
averaged energy flux of the normally incident monofrequency plane wave in the water.

Eight design parameters, denoted p1,p2,...,p8, are varied within the following search
space for the DE minimization: lattice period [p1 = d, with least distance between
cavities in 2-80 mm], coating thickness [p2 = H , 0.5-12 mm], fraction of coating thick-

2



ness between water and closest cavity surface [p3, 0.2-0.94 and 0.2-0.8 for cases (a) and
(b), respectively], cavity excentricity parameter [p4 = a/b, to become relevant in Secs.
3 and 5], quotient between the length-scale sizes of the smallest and the largest cav-
ities [p5 = q, 0.15-1.0, relevant only for case (b)], rubber compressional-wave velocity
[p6 = α, 1400-1600 m/s]. rubber shear-wave velocity [p7 = β, 60-400 m/s], and rubber
density [p6, 900-1300 kg/m3].

The design results are shown in Fig. 2, for the four cases Pabsorpmin (a), Pabsorpmin
(b), and Pabsorp10 (a), Pabsorp10 (b). Corresponding optimal parameter values are
provided in Table I.
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Figure 2: Reflectancies in decibel as functions of frequency obtained by differential evolution [1]
optimization for coatings with sphere cavities. Case (a) involves one cavity type (left panel of Fig. 1),
whereas case (b) involves two cavity types (right panel of Fig. 1). Rubber materials with minimal
and 10 dB/wavelength compressional-wave absorption are prescribed for the dashed-line and solid-line
results, respectively. The coatings are specified in Table I. It is the largest reflectance within the band
8-22 kHz, marked with vertical lines, that is minimized.

Table I. Specification of optimized coatings for the curves of Fig. 2.

Pabsorpmin (a) Pabsorpmin (b) Pabsorp10 (a) Pabsorp10 (b)
optimum (dB) -10.4 -13.7 -14.8 -20.0
p1 = d (mm) 30.1 35.0 37.2 42.6
p2 = H (mm) 12.0 12.0 12.0 12.0
p3 0.20 0.20 0.20 0.20
p4 = a/b 1 1 1 1
p5 = q - 0.42 - 0.45
p6 = α (m/s) 1400.0 1400.0 1401.0 1401.0
p7 = β (m/s) 190.3 159.1 160.4 139.9
p8 = ρ (kg/m3) 1143.5 1171.7 1179.7 1160.6

3 Coatings with superellipsoid cavities

Following [2], the spherical cavities from Sec. 2 are now replaced by superellipsoidal
ones. In a local centered coordinate system, with horizontal coordinates x,y and a
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depth coordinate z, the equation of the cavity surface is

(

|z|

a

)p

+
(r

b

)p

= 1 , (3.1)

where r = |(x, y)|. In its local coordinate system, each cavity is apparently symmetric
with respect to rotation around the z axis. Fig. 3 shows a coated steel plate with the
spheres from Fig. 1 replaced by superellipsoids.
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Figure 3: A coated steel plate as in Fig. 1 but with superellipsoid cavities.

Coating design results, corresponding to those in Fig. 2 and Table I, are shown
in Fig. 4 and Table II. The shape exponent p from Eq. (3.1) is fixed at four for all
cavities. The previously irrelevant design parameter p4 for cavity excentricity is now
active with search interval according to [p4 = a/b from Eq. (3.1), 0.4-1.0]. For case (b)
with two types of cavities present, they differ in size but not in shape. Specifically, the
quotient a/b, with a and b from Eq. (3.1), is the same for both types. The classical
Meyer et al. [5] monopole scattering resonance, for a spherical cavity in an elastic
solid with a reasonably small shear-wave velocity, is crucial for the echo reduction
effect of an Alberich coating. It appears when the circumference equals two shear-wave
wavelengths in the solid. Examples in [2] illustrate how this resonance is changed when
the shape of the cavity is changed from spherical to (super)ellipsoidal.
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Figure 4: Reflectancies in decibel for optimized coatings as in Fig. 2 but for superellipsoid cavities.
Case (a) involves one cavity type (left panel of Fig. 3), whereas case (b) involves two cavity types
(right panel of Fig. 3). Rubber materials with minimal and 10 dB/wavelength compressional-wave
absorption are prescribed for the dashed-line and solid-line results, respectively. The coatings are
specified in Table II.
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Table II. Specification of optimized coatings for the curves of Fig. 4.

Pabsorpmin (a) Pabsorpmin (b) Pabsorp10 (a) Pabsorp10 (b)
optimum (dB) -18.9 -22.2 -20.8 -26.0
p1 = d (mm) 46.8 53.4 49.9 60.5
p2 = H (mm) 11.9 12.0 12.0 12.0
p3 0.20 0.20 0.29 0.22
p4 = a/b 0.41 0.40 0.40 0.41
p5 = q - 0.40 - 0.44
p6 = α (m/s) 1427.1 1400.7 1400.9 1413.8
p7 = β (m/s) 332.3 280.3 265.2 239.9
p8 = ρ (kg/m3) 1214.3 1257.2 1225.0 1225.8

Consider a rubber material with β/α = 0.2, where α and β are the compressional-
and shear-wave velocities, respectively. Three different kinds of cavities are chosen, all
with the same height 2a: (a) a sphere with radius a, (b) an ellipsoid with parameters
b = 2a, p=2 from Eq. (3.1), and (c) a superellipsoid with b = 2a, p=4. They are
illustrated in the left panel of Fig. 5. The solid-line scattering cross-section curves
(a), (b), and (c) in the right panel of Fig. 5, computed with the T-matrix method,
show resonances at fa, in kHz mm, about 96 for the sphere, 60 for the ellipsoid,
and 56 for the superellipsoid. Here, f denotes the frequency. A plane compressional
wave is incident from above, propagating downwards in the direction of increasing z,
cf. Eq. (3.1). The scattering cross-sections in the figure are all given relative to the
area 4a2π, which agrees with the geometrical cross-sectional area for the ellipsoid and
superellipsoid cavities.
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Figure 5: Left panel: Shapes of three cavities (a) a sphere with radius a, (b) an ellipsoid with
parameters a, b = 2a, p=2, as defined in Eq. (3.1), and (c) a superellipsoid with parameters a, b = 2a,
p=4. The dashed curve shows an enclosing sphere with radius 5a/2. Right panel: Total scattering
cross-sections for the three cavity types (a), (b), and (c), in rubber with β/α = 0.2. They are given
in units of the geometrical cross-sectional area 4a2π for the ellipsoid and superellipsoid cavities. A
compressional plane wave is incident from above. There is no absorption for the solid-line curves,
whereas the dashed-line ones concern cases with a shear-wave absorption of 20 dB per wavelength.
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No absorption is involved for the solid-line curves in the right panel of Fig. 5. In-
cluding a rubber shear-wave absorption of 20 dB per wavelength, the resonance effect
is not clearly seen at long ranges any more, and the dashed-line scattering cross-section
curves are obtained.

Absorption cross-sections are shown in Fig. 6, for the three chosen cavity types, for
a rubber shear-wave absorption of 20 dB per wavelength. They were computed using
the T-matrix method in connection with formulas such as Eq. (24) of Ref. [6]. As
before, a plane compressional wave is incident from above, and the cross-sections are
given in units of 4a2π. Interaction with the incident field is included, in contrast to
the scattering cross-sections of Fig. 5, which only involve the scattered field.
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Figure 6: Absorption cross-sections for the three cavity types (a), (b), and (c) from the left panel
of Fig. 5, in rubber with β/α = 0.2. Left panel: The total absorption cross-sections are shown by the
solid-line curves, whereas the dashed-line ones only concern the losses suffered within a surrounding
sphere with radius 5a/2. Right panel: Compressional-wave absorption of 10 dB/wavelength is included
here. The absorbed power within a surrounding sphere with radius 5a/2 is divided by a reference
intensity, taken as the incident wave intensity at the horizontal center level z = 0. There is only
compressional-wave absorption for the solid-line curves, whereas a rubber shear-wave absorption of 20
dB/wavelength is included for the dashed-line ones.

In comparison to the resonance frequencies seen in the solid-line curves in the right
panel of Fig. 5, the frequencies of maximum absorbance from Fig. 6 are shifted slightly
downwards. The peak frequency is still decreased as the volume of the cavity is in-
creased.

The dashed-line curves in the left panel of Fig. 6 show how much of the loss that
is suffered within the enclosing sphere of radius 5a/2 that is depicted in the left panel
of Fig. 5. As expected from Ref. [6], most of the lost energy is absorbed close to the
cavity.

The resonance frequency of an individual cavity can be lowered by increasing its
volume or by decreasing the rubber shear-wave velocity. Hence, for a fixed coating layer
thickness and a fixed rubber shear-wave velocity, oblate ellipsoidal or superellipsoidal
shapes seem appropriate to get a thin coating for low frequencies. For the example
with cavity height limited to 2a and β/α = 0.2, Figs. 5 and 6 show that a coating with
spherical cavities would have much higher single-cavity resonance frequencies.

The right panel of Fig. 6 shows absorption cross-section results when rubber comp-
ressional-wave absorption of 10 dB/wavelength is included. The spherical, ellipsoidal,
and superellipsoidal cavities from the left panel of Fig. 5 are still used. With losses
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already in the incident compressional wave, the incident wave intensity now decreases
with increasing z and the definition of an absorption cross-section becomes less obvious.
The “close-range cross-sections” in the right panel of Fig. 6 concern the absorbed
power within the 5a/2 radius sphere surrounding a cavity, divided by the incident wave
intensity at the horizontal center level z = 0. No shear-wave absorption is introduced
for the solid-line curves, whereas the shear-wave absorption is 20 dB/wavelength for
the dashed-line ones.

4 Coatings with circle-cylinder cavities

A sphere can be transformed to a cylinder, with circular cross-section, by extension
in one lateral direction. Fig. 7, taken from [3], shows how the resonance frequencies,
expressed as ksa = ωa/β where ω = 2πf is the angular frequency, vary with β/α for a
sphere and a circle-cylinder. A monofrequency radially symmetric compressional wave
is normally incident on the cavity. As β/α decreases, the resonance frequencies for the
fundamental T-matrix element approach the ones for the cavity surface displacement
amplitude from above, in the sphere as well as cylinder cases.

An important observation is that the resonance frequencies for the cylinder are much
smaller than those for a sphere of the same radius. For the β/α values considered in
Fig. 7, the displacement amplitude resonance frequencies for the cylinder are less than
half of those for the sphere. As β/α decreases to zero, the resonance frequencies for
the cylinder decrease towards zero as well.
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Figure 7: Resonance scattering by a spherical (the two upper curves) or cylindrical (the two
lower curves) cavity in a homogeneous solid medium. In each case, the uppermost and lowermost
curves indicate the (lowest) resonances for the fundamental T-matrix element and the cavity surface
displacement, respectively.

It is thus of interest to design optimal coatings as in Secs. 2 and 3 but for circle-
cylinder cavities as depicted in Fig. 8. The computations can be performed in 2-D,
since the wave fields are now independent of the y coordinate. The LMS method for
computation of scattering by a phononic crystal slab is described in a unified way for
3-D and 2-D cases in [3, Sec. III]. Handling of different types of scatterers at the same
interface is also treated in [7, Sec. 3], including computation of transition matrices for
vertically displaced scatterers.

The design results for coatings with circle-cylinder cavities are shown in Fig. 9 and
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Figure 8: A steel plate is covered with an Alberich rubber coating with circle-cylinder cavities in
a lattice with period d. Case (a) in the left panel involves one cavity type, whereas case (b) in the
right panel involves two cavity types. In each case, Cartesian xyz coordinates are shown, with the y
axis going out of the paper plane. The cavity lattice has a single period d, in x.
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Figure 9: Reflectancies in decibel for optimized coatings as in Figs. 2 and 4 but for circle-cylinder
cavities. Case (a) involves one cavity type (left panel of Fig. 8), whereas case (b) involves two cavity
types (right panel of Fig. 8). Rubber materials with minimal and 10 dB/wavelength compressional-
wave absorption are prescribed for the dashed-line and solid-line results, respectively. The coatings
are specified in Table III. It is the largest reflectance within the band 8-22 kHz, marked with vertical
lines, that is minimized.

Table III. Specification of optimized coatings for the curves of Fig. 9.

Pabsorpmin (a) Pabsorpmin (b) Pabsorp10 (a) Pabsorp10 (b)
optimum (dB) -14.3 -23.4 -18.2 -28.9
p1 = d (mm) 45.9 65.5 57.1 67.3
p2 = H (mm) 12.0 10.8 12.0 12.0
p3 0.20 0.43 0.20 0.70
p4 = a/b 1 1 1 1
p5 = q - 0.30 - 0.32
p6 = α (m/s) 1412.9 1400.0 1464.5 1400.0
p7 = β (m/s) 368.7 176.5 352.0 110.6
p8 = ρ (kg/m3) 1300.0 1034.8 1300.0 1002.8

Table III. Compared to the results for spheres in Sec. 2, significant improvements can
be noted. Particularly the case (b) results are competitive in comparison to Fig. 4 in
Sec. 3 as well. It is worth observing that the optimal p3 parameter values in Table III,
for outer coating thickness fraction, are as large as 0.43 and 0.70 for the two (b) cases,
respectively. These values are much larger than the lower search interval limit 0.20,
indicating that small cylinder radii provide resonance frequencies that are low enough,
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and that very good performance could presumably be obtained with significantly thin-
ner coatings.

5 Coatings with superellipse-cylinder cavities

The coatings with sphere cavities in Fig. 1 of Sec. 2 were extended in Sec. 3 to coatings
with superellipsoid cavities according to Fig. 3. It is now natural to extend the coatings
with circle-cylinder cavities in Fig. 8 of Sec. 4 to coatings with superellipse-cylinder
cavities as in Fig. 10.
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Figure 10: A coated steel plate as in Fig. 8 but with superellipse-cylinder cavities.

The required extension of the LMS computational method, to cylindrical scatterers
with noncircular cross-sections, is outlined in [7, Sec. 3.C]. In general, the transition
matrix T must now be computed numerically, with the null field approach, for exam-
ple. As described in [8], [9], general representation formulas are used to express the
expansion coefficients of the incident and the scattered fields, respectively, in terms of
integrals of displacements and tractions over the scatterer surface. The surface fields
are expanded in some suitable basis of vector wave functions, and the desired T -matrix
is obtained by matrix inversion followed by matrix multiplication. In a suitable cylin-
drical vector solution basis, the transition matrix T is symmetric, which can be used
to check the accuracy.

Coating design results for the superellipse-cylinder cavities, corresponding to the
results in Fig. 9 and Table III, are shown in Fig. 11 and Table IV. In a local cen-
tered coordinate system, with horizontal coordinates x,y and a depth coordinate z, the
equation of the superelliptical cavity surface is

(

|z|

a

)p

+

(

|x|

b

)p

= 1 . (5.1)

The shape exponent p is fixed at four for all cavities. As in Sec. 3, the design parameter
p4 for cavity excentricity is now active with search interval according to [p4 = a/b from
Eq. (5.1), 0.4-1.0]. For case (b) with two types of cavities present, they differ in size
but not in shape. Specifically, the quotient a/b, with a and b from Eq. (5.1), is the
same for both types.

The optimal p3 parameter values in Table IV, for outer coating thickness fraction,
are large in all cases, with values between 0.55 and 0.75. It was noted already in
connection with Table III that such large values, much larger than the lower search
interval limit 0.20, indicate that very good performance could presumably be obtained
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Figure 11: Reflectancies in decibel for optimized coatings as in Fig. 9 but for superellipse-cylinder
cavities. Case (a) involves one cavity type (left panel of Fig. 10), whereas case (b) involves two cavity
types (right panel of Fig. 10). Rubber materials with minimal and 10 dB/wavelength compressional-
wave absorption are prescribed for the dashed-line and solid-line results, respectively. The coatings
are specified in Table IV.

with significantly thinner coatings.

Table IV. Specification of optimized coatings for the curves of Fig. 11.

Pabsorpmin (a) Pabsorpmin (b) Pabsorp10 (a) Pabsorp10 (b)
optimum (dB) -26.4 -35.5 -30.0 -36.4
p1 = d (mm) 43.4 57.0 42.0 64.4
p2 = H (mm) 11.6 8.0 8.6 10.3
p3 0.55 0.56 0.55 0.75
p4 = a/b 0.40 0.40 0.40 0.40
p5 = q - 0.33 - 0.33
p6 = α (m/s) 1400.0 1400.0 1400.0 1481.8
p7 = β (m/s) 400.0 208.3 334.6 154.4
p8 = ρ (kg/m3) 1185.4 912.7 1059.7 900.0

As in Sec. 3, it is useful to study scattering and absorption cross-sections for an
isolated cavity in order to understand the improved echo reduction obtained by ex-
tending the cavities laterally. The T-matrix method can be used to compute the cross-
sections, in connection with formulas such as [7, (61)-(62)]. Fig. 12 and Fig. 13 show
results corresponding to those in Fig. 5 and Fig. 6, respectively. The rubber shear-
and compressional-wave velocities β and α still fulfil β/α = 0.2 in these examples. As
before, a plane compressional wave is incident from above, but the cross-sections are
now given in units of 4a, which is the geometrical cross-sectional length for the ellipse
and superellipse cavities.

Figs. 12 and 13 show that fa at cavity resonance is lowered when the cylinder cross-
section is extended in the lateral direction, orthogonal to the direction of the incident
plane compressional wave. Moreover, as seen by a comparison to Figs. 5 and 6, 2-D
cylindrical cavities provide significantly lower resonance fa values than corresponding
3-D cavities that are rotationally invariant in the lateral directions.

It is informative to consider the cavity half-heights a for the optimal coatings ac-
cording to Table IV. For the Pabsorp10 (a) case, for example, one has a = 1.93 mm.
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Figure 12: Left panel: Shapes of three cavities (a) a circle-cylinder with radius a, (b) an ellipse-
cylinder with parameters a, b = 2a, p=2, as defined in Eq. (5.1), and (c) a superellipse-cylinder with
parameters a, b = 2a, p=4. The dashed curve shows an enclosing cylinder with circular cross-section
and radius 5a/2. Right panel: Total scattering cross-sections for the three cavity types (a), (b), and
(c), in rubber with β/α = 0.2. They are given in units of the geometrical cross-sectional length 4a
for the cavities with elliptic and superelliptic cavities. A compressional plane wave is incident from
above. There is no absorption for the solid-line curves, whereas the dashed-line ones concern cases
with a shear-wave absorption of 20 dB per wavelength.
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Figure 13: Absorption cross-sections for the three cavity types (a), (b), and (c) from the left panel
of Fig. 12, in rubber with β/α = 0.2. Left panel: The total absorption cross-sections are shown by the
solid-line curves, whereas the dashed-line ones only concern the losses suffered within a surrounding
sphere with radius 5a/2. Right panel: Compressional-wave absorption of 10 dB/wavelength is included
here. The absorbed power within a surrounding sphere with radius 5a/2 is divided by a reference
intensity, taken as the incident wave intensity at the horizontal center level z = 0. There is only
compressional-wave absorption for the solid-line curves, whereas a rubber shear-wave absorption of 20
dB/wavelength is included for the dashed-line ones.

With 8 kHz < f < 22 kHz, this corresponds to 15.4 kHz mm < fa < 42.5 kHz mm.
Comparison can be made to the dashed-line (c) curve in the right panel of Fig. 13,
although β/α = 334.6/1400 = 0.24 is slightly different from 0.2 and the shear-wave ab-
sorption 25 dB/wavelength is slightly different from 20 dB/wavelength. As expected, a
large single-cavity absorption effect appears for fa in the interval (15.4,42.5) kHz mm.
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6 Conclusions

Significant echo reduction can be achieved by rubber coatings with cavities arranged in
a periodic fashion. Incident sound energy is scattered by the cavities, which promotes
absorption in the rubber material of the coating. The effect appears for frequencies in
the vicinity of the cavity resonance frequencies, and it is useful to mix cavities of at
least two sizes to obtain broad-band echo reduction.

Cavities of different shapes are compared in the present paper, concerning their
echo reduction capability. Thin coatings with effect at low frequencies are desired,
indicating a need of low fa values at resonance for the coating cavities. Here, f is the
frequency and a is half the cavity height. It is seen that the fa resonance values can
be lowered by extending the cavities in the lateral directions, parallel to the coating.
Cavities of 3-D type according to Eq. (3.1), with rotational invariance in the lateral
directions, are compared to 2-D cylinder cavities according to Eq. (5.1), with infinite
extension in one of the lateral directions. In these equations, b denotes lateral cavity
half-axis length. For the same excentricity (same a/b value), the 2-D cylinder cavity
gives a much lower value of fa at resonance than does the 3-D cavity. A much larger
excentricity would be needed for the 3-D cavity, to compensate the infinite extension
of the 2-D cylinder in one of the lateral directions, and the lattice period d imposes
constraints on the excentricity.
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