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ABSTRACT  
 

In multiple-target volume backscattering applications, the volume and cross-sectional area interrogated by the acoustic beam may be in-
fluenced by finite-amplitude sound propagation effects. To analyze the magnitude of such effects, generic governing equations for propagation 
and backscattering of small- and finite-amplitude signals in fluid media are formulated in terms of power budget equations, describing transmit-
receive electrical power transfer functions, applicable to single-target and volume backscattering.  Effective sampled area and sampled volume 
of the volume backscattering system are defined, accounting for two-way sound propagation and the transmit and receive properties of the 
transducer.  Volume backscattering power flow is interpreted in terms of the equivalent backscattering cross section of the sampled volume. 
Expressions are given which describe how the sampled area, the sampled volume, and the backscattering cross-section of the sampled volume, 
are influenced by finite amplitude effects. 
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I.  INTRODUCTION 
 

Acoustic backscattering is used in diverse applications, 
such as remote sensing, acoustic Doppler current profiling, 
fish abundance estimation, fish species identification, acoustic 
imaging, etc.  Control with the volume and cross-sectional 
area being interrogated by the sound field, is important.  

At long measurement ranges, or in noisy environment, 
challenges with low or marginal signal-to-noise ratio (SNR) 
may be experienced.   In such situations, manufactures or us-
ers may be tempted to increase the electrical transmit power of 
the equipment.  The resulting high sound pressure levels may 
introduce finite-amplitude effects as the sound signal propa-
gates through the fluid medium.  The chance of introducing 
finite-amplitude sound propagation effects increase with in-
creasing frequency [1]. 

The volume and cross-sectional area interrogated by 
the acoustic beam (here referred to as the “sampled volume” 
and “sampled area”, respectively) are affected when finite-
amplitude effects are present. The reason for that is the pres-
sure dependency of the sound velocity in fluids [1]. The high 
and low pressure portions of the sound signal travel with dif-
ferent sound speeds, causing signal distortion. During propa-
gation through the fluid medium, energy is transferred from 
the signal’s fundamental frequency component to the higher 
harmonic components.  Consequently, for applications in 
which the fundamental frequency is the component exploited, 
the properties of the interrogating sound field are altered. 

The sound pressure is highest at the main lobe. The 
fundamental frequency component’s loss of energy is thus 

largest there, causing changed spatial distribution of the inter-
rogating sound field, such as flattened beam pattern and in-
creased beam width [1-4]. The altered beam pattern leads to 
changed sampled volume and area.  

If not aware of or controlling such influences, a user 
may easily (and erroneously) assume that a different portion of 
the fluid volume is interrogated, than what is actually the sit-
uation.  In applications of volume backscattering at high signal 
amplitudes, it is thus of interest to control and quantify how 
large the possible effects of finite amplitude are, such as with 
respect to changed sampled area and volume. The influence of 
range, frequency, and electrical transmit power is essential. 
Current literature appears to be sparse on expressions describ-
ing the effects of finite amplitude on the volume and cross-
sectional area being interrogated by the sound beam in volume 
backscattering applications. 

The objective of the present work is to improve on this 
lack of knowledge by giving expressions which describe how 
the sampled area, the sampled volume, and the backscattering 
cross-section of the sampled volume, are influenced by finite 
amplitude effects. 
 
 
II.  ANALYSIS 
 

A monostatic measurement situation with single-target 
and multiple-target (volume) backscattering is considered. 
Generic governing equations for propagation and backscatter-
ing of small- and finite-amplitude signals in fluid media are 
formulated in terms of power budget equations [5]. That is, in 
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terms of transmit-receive electrical power transfer functions, 
applicable to single-target and volume backscattering. These 
equations apply under the assumption that certain stated ap-
proximations are valid [6,5].  These are assumptions underly-
ing e.g. the conventional theory of fishery acoustics (abun-
dance measurement, and species identification) [2,3,6]. For 
the finite-amplitude case, it is assumed that finite-amplitude 
effects are influent only for the forward-propagated signal, and 
not for the backscattered signal [5].  

The small- and finite-amplitude power budget equa-
tions [6,5] are interpreted in terms of power flow, for single-
target and for volume backscattering [7]. Effective sampled 
area and sampled volume of the volume backscattering system 
are defined, accounting for two-way sound propagation, and 
the transmit and receive properties of the transducer. These 
are denoted sA and n

sA , and sV and n

sV , respectively, for 

small-amplitude and finite-amplitude signals (with no super-
script, and superscript “n”,  respectively). sA is  defined as the 

cross-sectional area of the two-way equivalent beam solid an-
gle, at range r. sV is defined as sA multiplied with one half of 

the transmitted signal length (in meters) [8].  Similar defini-
tions are used for n

sA  and  n

sV [7]. Expressions are derived for 

the sampled area and sampled volume [7].   
Volume backscattering power flow is interpreted in 

terms of the equivalent backscattering cross section of the 
sampled volume [8,7]. These are denoted v

bs  and nv

bs

, , for 

small-amplitude and finite-amplitude signals, respectively. For 
the precise definitions and analysis of these quantities, it is 
referred to Appendix B of [8], and [7]. 

For finite-amplitude signals, the expressions for the 
sampled area, sampled volume, and the equivalent backscat-
tering cross section of the sampled volume, are compared with 
the corresponding expressions for small-amplitude signals. It 
is found that [7] 
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where a “beam angle finite-amplitude factor” is introduced, 

defined as 
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Here,   [2,3,6,9,10] and )(rn  [4,5] are the equivalent two-

way beam solid angles of the transducer, for small- and finite-
amplitude signals, respectively.    ,iB  and ),,( rn

iB  are 

the beam patterns of the incident sound pressure wave, at small- 
and finite-amplitude conditions, respectively. That is, the angu-
lar distributions of the sound pressure, respectively, normalized 
to the respective axial sound pressures at the same range [5]. 

For finite amplitude signals, one has 1)( rn

rel , so that 

s

n

s AA  , s

n

s VV  , and v

bs

nv

bs  , . For given range and fre-

quency, the sampled area, sampled volume, and the equivalent 
backscattering cross section of the sampled volume, thus in-
crease with increasing signal amplitude, until full saturation 
occurs, and constant values are reached.  

At large ranges, ),,( rn

iB , and thus )(rn

rel , and there-

fore also s

n

s AA , s

n

s VV , and v

bs

nv

bs  , , become approximate-

ly constant, for a given frequency and a given source level. 
For a given transducer, frequency, and electrical trans-

mit power level, ),( iB  and ),,( rn

iB , and thus  , 

)(rn , and )(rn

rel , can be measured. [In fisheries acoustics, 

for example,   is provided on a routinely basis by many echo 

sounder manufacturers [10].] Alternatively, these quantities can 
be calculated using numerical models, such as e.g. the “Bergen 

Code” [11] based on the KZK equation [12,13], or similar 
models [1].   
 
 
III.  EXAMPLE RESULTS 
 

To illustrate typical magnitudes of effects which may 
be expected, an example is taken from fisheries acoustics 
(abundance estimation).  Two scientific echo sounders are 
considered, Simrad ES120-7C and ES200-7C, operating at 
120 and 200 kHz, respectively [4]. The half-power (-3dB) 
angles of both transducers are 3.5o (nominal values), with 
measured values of )sr1log(10   equal to -21 and -20.5 dB 

re. 1 sr, for the 120 and 200 kHz transducers, respectively [4].  
The “Bergen Code” is used for calculations of the radi-

ated sound fields of these transducers for small- and finite-
amplitude signals, over the ranges 12-300 m. As a simplified 
(but still relevant) approach, the transducers are assumed to 
vibrate as uniformly vibrating circular planar pistons, mounted 
in a rigid baffle of infinite extent. The effective piston radii of 
the two transducers are taken to be 52.8 and 32.0 mm, respec-
tively, obtained from tank measurements of the transducers’ 

far field beam patterns at small-amplitude conditions [4]. For 
small-amplitude signals, the source condition pressure ampli-
tude 0P  is taken to be 1 Pa. For finite-amplitude signals, 0P  is 

scaled by the voltage amplitude measured across the transduc-
er’s electrical terminals upon signal transmission. For the 120 
kHz transducer, 0P  values of 51090.1   and Pa1096.3 5 were 

used, for electrical transmit powers of 250 and 1000 W, re-
spectively.  For the 200 kHz transducer, 0P  values of 

51063.2   and Pa1092.7 5 were used, for electrical transmit 

powers of 120 and 1000 W, respectively [4]. The density and 
sound speed of seawater are taken to be 1027 kg/m3 and 1491 
m/s, respectively, and the nonlinearity coefficient is set to 

59.3 . The absorption coefficient of seawater   is - 

somewhat simplified with respect to its frequency dependency 
- taken to be 2131006.3 f   and Np/m1057.1 213 f  , for the 

120 and 200 kHz signals, respectively.  
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Fig. 1 shows )(rn

rel  calculated as a function of range, 

r, for the 120 and 200 kHz echo sounders. Two power settings 
are used for each echo sounder frequency (corresponding to 
“low” and “high” electrical transmit power levels): 120 kHz at 
250 and 1000 W, and 200 kHz at 120 and 1000 W.  From Eq. 
(1), it follows that Fig. 1 also describes the change of s

n

s AA , 

s

n

s VV , and v

bs

nv

bs  , , as a function of range, r, for the fre-

quencies and power settings given above. 
An example may be illustrative. Consider the case r = 

100 m, f = 200 kHz, electrical transmit power = 1000 W, and 
pulse duration = 1 ms (corresponding to a pulse length of 
about 1.5 m in seawater). From Fig. 1 it follows that )(rn

rel  

1.29. From expressions given in [7], it can be shown that for 
small-amplitude signals, the sampled area and sampled vol-
ume become 2m5.78sA  and 3m9.58sV , respectively. 

For finite-amplitude signals (“high” power setting, 1000 W), 
the sampled area and sampled volume increase by a factor 
1.29 to 2m3.101n

sA  and 3m0.76n

sV , respectively. For 

the radius of the sampled area, this corresponds to an increase 
from 5.0 m to about 5.7 m, due to the increased electrical 
transmit power. 

 

 
Fig. 1.  Beam angle finite-amplitude factor, )(rn

rel , simulated using the KZK 

equation as a function of range, r, for two echo sounder frequencies, 120 and 
200 kHz, at two different electrical transmit power levels for each frequency.  
 
 
IV.  CONCLUSIONS 
 

It has been shown that for finite-amplitude signals in 
multiple-target (volume) backscattering applications, the sam-
pled volume, the sampled area, and the backscattering cross 
section of the sampled volume, at given range and frequency, 
all increase proportional to )(rn

rel . That is, proportional to 

the quotient of the equivalent two-way beam solid angles at 
finite- and small-amplitude conditions, respectively. The ex-
pression for )(rn

rel  is given in terms of the transducer’s beam 

patterns at finite- and small-amplitude conditions, which can 

relatively easily be measured at laboratory conditions, or cal-
culated. Example calculations are given here. 

The analysis is relatively generic, and derived under a 
set of well defined assumptions (conditions). The results are 
expected to apply to a relatively wide range of acoustic 
backscattering systems operating in fluid media. 
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