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Abstract  
The wave equation is a well known partial differential equation (PDE) very often 

used to describe phenomena observed in many areas of physical sciences including 

mechanics, electromagnetics, quantum mechanics, relativistic gravity and acoustics. 

When transformed into frequency domain it forms Helmholtz equation.  However, 

the numerical solution of these partial differential equations by standard 

discretisation schemas leads to the inverse problem which appears to be ill-

conditioned for the case of Helmholtz equation. 

The papers presents the basics of nonstandard scheme and its application for the 

case of the modelling the frequency response of piezoelectric circular disc. The 

results show its superior properties in solving discrete linear systems originated 

from transforming continues Helmholtz partial differential equation into discrete 

domain. The included example represents unique illustration of results obtained with 

standard and nonstandard schemas. 
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Introduction  

Mathematical models of many dynamical systems very often leads to the partial 

differential equations (PDE). A variety of methods have been constructed to calculate the 

solution for arbitrary PDE with arbitrary initial and boundary conditions. One of the first 

method was finite difference method (FDM) that approximates the solution using finite 

difference equations. The method require to divide analyzed space into very refined mesh 

to obtain satisfactory results. The concept of solution based on dividing the domain into 

subdomain was further developed by introducing variational methods from the calculus of 

variations to solve the problem by minimizing an associated error function. This numerical 

technique is now known as finite element method (FEM). Moreover in the last years the 

divergence theorem was applied in a process of solution for some of equations that could 

be transformed into integral form. The solution based on transforming volume integrals 

into surface integral is essential in the method called finite volume method (FVM).  

In engineering practice when the system is linear the partial difference equations 

having time dependence could be transformed into frequency domain what reduces the 

dimensionality but introduces calculations on complex numbers. In all cases the problem 
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of accuracy and its dependence on the size of the mesh is still chalanging despite the fact 

that high power computers are available at your fingertips. 

 

Theory 

The standard approach of numerical solution of PDE applies the approximation of 

derivatives with following scheme: 

 
hdx

d ii  
 1  (1) 

where h is typically called sampling distance. The accuracy of results obtained by that 

approach is heavily dependent on h with theoretically exact solution obtained with limiting 

case of h=0, what is impossible to implement numerically. The error coming from using 

nonzero values of sampling space obviously could be identified when Taylor expansion of 

a function is considered. 

As a remedy for minimizing notorious error in an approximation of derivatives Mickens 

[1] proposed different approach with discretization of the derivative described by: 
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where )(h has different form depending on the PDE. He gives examples of several PDEs 

that could be exactly solved with discrete approach when denominator function has the 

form i.e.    /)1(),1ln(),sinh(,1,1,sin hhh ehheeh   . He defines also nonstandard 

difference rules as proposed by his theory that could be formulated as follows: 1) discrete 

derivative has more complicated denominator, 2) nonlinear term should be modeled 

nonlocally 
ii yyy 1

2

 , 3) the orders of the discrete derivatives must equal to the orders of 

the corresponding derivatives of differential equations, 4) special solutions of the 

differential equations should be a solution of the finite difference equation, 5) the finite 

difference equations should not have solutions  that do not correspond exactly to solutions 

of the differential equations. However it is not straightforward how to attribute the 

denominator function for an arbitrary PDE. But he states that applying the rules mentioned 

gives consistency, stability and convergence when solving PDE by numerical algorithms.  

The application of nonstandard scheme proposed by Mickens theory to Helmholtz 

equation leads to the lemma that can be formulated as follows: when solving one-

dimensional Helmholtz PDE 02   k with a discrete scheme 
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the exact solution is obtained when replacing:     2/2/sin khkhhh  in differential 

equation (in second derivative) and   khkhhh sin  in boundary condition (in first 

derivative). 

The prove can be obtained immediately when we define the optimization problem of 

minimizing the error introduced by discrete form of an approximation of a derivative  
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with introduced 1c  constant as a unknown optimization parameter. For the Helmholtz 

equation that has known solution that may be written as jkzAe  for which 
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)()('' 2 xkx    and )()( xehx jkh   the equation could be solved analytically with a 

following result 
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what means that applying 1c  as in Eq. (5) guarantees exact solution! The scheme obtained 

could be expressed in the slightly different form as proposed in Table 1 what proves the 

lemma. 

 

Tab. 1. The comparison of standard and nonstandard scheme for Helmholtz one-
dimensional equation. 
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For the case of two- and three-dimensional Helmholtz PDE the solution is obtained by 

averaging [2] and the nonstandard approach does not give exact solution, unfortunately. 

However, the optimised solution have similar form: 22

02 )(4 hkkhJc  for two-dimensional 

PDE and 22

03 )(6 hkkhjc  for three-dimensional one where J0 and j0 are Bessel function 

and spherical Bessel functions. 

 

Results 

To verify quantitatively the theory of nonstandard approach let us consider the model of 

thickness vibration of piezoelectric circular disc with a radius a and thickness l  as 

presented in Fig.1. Applying driving current I to electrodes located on upper and lower 

surfaces of a vertically polarized disc results in vibration of it with velocity u3 and u2 , 

respectively.  

                                                  

Fig.1. The parameters of piezoelectric circular disc as used in modelling of impedance 
frequency response for thickness mode of vibrations. 
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The equations presented below describes the analytical and numerical solution required for  

obtaining input impedance formulae. It will be finally used to compare the performance of 

standard and nonstandard approach. 

The analytical solution could be obtained with application of  three-ports model of a disc 

as described i.e. in [3]. It results in matrix equation : 
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where impedance matrix Z depends on angular frequency of vibration   and geometrical 

parameters of a disc (a, l), physical parameters of a disc material (  ,
33c , S

33 ,
33h ) and its 

combinations (
33/ cl   ,

33

2

3 caZ  ). The wave number r from Helmholtz equation 

is equal here  // 333 cvk  . Than the boundary conditions related to water front 

loading ZF and cork backing ZB as applied to the problem can be inserted in solution as:  
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Finally the input impedance could be calculated directly as 
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Discrete solution could be obtained in turn directly from Helmholtz wave equation and can 

be presented similarly in matrix form as: 
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where i is the amplitude of vibration of i-th sample of a space discretized along disc 

thickness,  is the parameter related to matrix form of partial difference equation and is 

equal:  



 


)cos(

)(2 2

kh

kh
  

for standard scheme 

for nonstandard scheme 

and FB, and FB, is related to boundary condition effects:  















3

,

3

,

,

)sin(2

2

Z

Z
khj

Z

Z
jkh

FB

FB

FB
     














3

2

33

3

2

33

)sin(2

2

Z

Ih
khj

Z

Ih
jkh




   

 

for standard scheme 
 

for nonstandard scheme 



 5 

with impedances defined as  
FBFBFB vaZcaZ ,,

2

,33

2

3   . Finally the unknown input 

impedance could be calculated as: 
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Fig. 2 presents the results obtained by applying Eq. (6,7,8) for analytical solution treated 

as exact solution and Eq. (9,10) for discrete solution. Moreover the latter is used for 

standard scheme and for nonstandard scheme. Additionally, two cases for nonstandard 

scheme are distinguished i.e. standard scheme in boundary condition and nonstandard 

scheme in boundary condition.  

 

 

Fig 2. The admittance frequency response of 200kHz piezoelectric disc in thickness mode 
of vibration for first (upper chart) and second (lower chart) mode as obtained with 
analytical and discrete methods. For comparison purposes the discrete solutions are 
presented for standard scheme, nonstandard scheme applied in PDE only and 
nonstandard scheme in PDE and in boundary condition. 
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As an example let us consider the calculation for one frequency i.e. 200kHz. When a 

thickness domain l=1cm is divided into n=11 samples (kh=0.29<2π/10 what is below 

recommended ten wavelengths in disc thickness) the methods gives the modulus of 

impedance 790Ω, 697Ω and 664Ω, respectively. The last value is exact solution. 

Obviously, increasing the number if division results in achieving asymptotically the last 

value, obtained by theory and nonstandard scheme, which is in fact exact in this case. 

Moreover, it is worth to observe that for higher frequencies the difference in resonance 

value between standard and nonstandard approach is higher, what confirms known opinion 

on difficulties in obtaining required accuracy with standard approach for higher vibration 

modes. 

 

Discussion 

A calculation of admittance for piezoelectric transducer is presented here as an example of 

numerical solution of the Helmholtz partial differential equation. The results obtained 

show superior properties of nonstandard approach as compared to standard one.  The 

essential part of nonstandard technique lies in the form of a denominator function used in 

approximation of derivative and it appears that for Helmholtz wave equation it has a form 

of cardinal sinus function sinc(x)=sin(x)/x. It is worth to note that the function is used very 

often in signal processing in interpolation of band limited signals and is known as a 

sampling function. Actually the interpolation of signals is related to its spectral 

representation, which is - in fact - based on orthogonality of Fourier base. But the same 

Fourier base is also the solution of Helmholtz PDE. 

 

Conclusions 

Nonstandard approach may give exact or optimal solution of differential equation when 

using discrete numerical methods of solution. It does not require highly precise mesh for 

discrete calculation. It guarantees stable, consistent and convergent numerical properties 

of linear operator A of linear equation Ax=b which appears in the process of numerical 

solution of arbitrary PDE. The approach could be also treated as a specialized 

regularization of a numerical version of partial difference equation. 
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